Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 6^1 có chữ số tận cùng là 6
6^2 có chữ số tận cùng là 6
6^3 có chữ số tận cùng là 6
...
=>6^k có chữ số tận cùng là 6(kEN*)
=>6^8 có chữ số tận cùng là 6
=>19781986^8 có chữ số tận cùng là 6
=>C có chữ số tận cùng là 6
Ta có: các số tự nhiên tận cùng bằng 0,1,5,6 khi nâng lên lũy thừa bất kì (khác 0) vẫn giữ nguyên chữ số tận cùng của nó
Vậy chữ số tận cùng của C=197819868 là 6
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72
4)
20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2
=>chữ số tận cùng của 20122013 là 2
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
sai rồi phải là 96 chứ 96*76:R100= 96 mà