\(B=\frac{x^5+x^2}{x^3-x^2+x}\)      \(vs\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

a,\(B=\frac{x^5+x^2}{x^3-x^2+x}\left(ĐKXĐ:x\ne0\right)\)

\(\Rightarrow B=\frac{x^2\left(x^3+1\right)}{x\left(x^2-x+1\right)}=\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x\)

b,Để \(B=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

c,\(B=x^2+x=x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2+\left(-\frac{1}{4}\right)\ge-\frac{1}{4}\)

Vậy MIn = -1/4 <=> x = -1/2

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

31 tháng 3 2018

\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)

\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)

\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)

\(A=\frac{-1}{x^2}\)

31 tháng 3 2018

Ta có :\(x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)

\(\Rightarrow A=\frac{-1}{2^2}\)

\(A=\frac{-1}{4}\)

30 tháng 7 2019

a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)

\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x}{x+1}\)

30 tháng 7 2019

MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ

\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)

\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)

\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)

Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)

\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)

\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)

6 tháng 12 2020

Bài làm

\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

\(=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}-\frac{1}{x-2}\)

\(=\frac{x+2}{x+3}-\frac{5}{x\left(x+3\right)-2\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) x2 - 9 = 0 <=> ( x - 3 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}x=3\left(nhan\right)\\x=-3\left(loai\right)\end{cases}}\)

x = 3 => \(P=\frac{3-4}{3-2}=-1\)

c) \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để P đạt giá trị nguyên => \(\frac{2}{x-2}\)nguyên

=> \(2⋮x-2\)

=> \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x-21-12-2
x3140

Vậy ...

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)