\(10a^2-ab=3b^2\left(a\ne0,b\ne0\right)\)

Tính gtri biểu thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

\(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)

\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}\left(5ab=3b^2-10a^2\right)\)

\(=\frac{-3\left(9a^2-b\right)}{9a^2-b^2}=-3\)

10 tháng 1 2017

Từ \(10a^2-3b^2+5ab=0\)

\(\Rightarrow10\left(a+\frac{b}{4}\right)^2-\frac{29b^2}{8}=0\)

\(\Rightarrow a=b=0\)

Thay vào ....

6 tháng 2 2016

Theo giả thiết, ta có:

\(10a^2-3b^2+5ab=0\)

nên   \(3\left(10a^2-3b^2+5ab\right)=0\)

\(\Leftrightarrow\)  \(30a^2-9b^2+15ab=0\)

\(\Leftrightarrow\)  \(15ab=-30a^2+9b^2\)

Do đó:  \(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3a^2+\left(-30a^2+9b^2\right)-6b^2}{9a^2-b^2}\)

             \(A=\frac{-27a^2+3b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)  (do  \(9a^2-b^2\ne0\)  )

Bài 1.Cho \(x+y+z=0\)Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)CMR: \(xy+yz+zx=0\)Bài 3. Cho \(3x-y=2z\)                \(2x+y=7z\)Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)Bài 5....
Đọc tiếp

Bài 1.Cho \(x+y+z=0\)

Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

CMR: \(xy+yz+zx=0\)

Bài 3. Cho \(3x-y=2z\)

                \(2x+y=7z\)

Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)

Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)

Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)

Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)

Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)

Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

6
15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

28 tháng 6 2017

Phép nhân các phân thức đại số