Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :
\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)
\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)
\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)
\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)
Vì \(a;b\ge c\Rightarrow a=b=2c\)
Vậy ...
BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng BĐT Cauchy:
\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=2c\)
Dấu '' = '' không xảy ra
Áp dụng BĐT AM-GM:
Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:
\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)
\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)
Ta có đpcm.
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
bdt tương đương với \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)
neu ac+bd \(\le0\) thi bdt can duoc cm
neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)
Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)
\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)
p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^
Ta có: \(\hept{\begin{cases}a^2+b^2+1=2\left(a+b\right)\\c^2+d^2+36=12\left(c+d\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2+\left(b-1\right)^2=1\\\left(c-6\right)^2+\left(d-6\right)^2=36\end{cases}}\)
\(\Rightarrow\) Đường tròn tâm \(\hept{\begin{cases}I\left(1;1\right)\\R=1\end{cases}}\), đương tròn tâm \(\hept{\begin{cases}I'\left(6;6\right)\\R'=6\end{cases}}\)
Gọi \(\hept{\begin{cases}A\left(a;b\right)\in\left(I\right)\\B\left(c;d\right)\in\left(I'\right)\end{cases}}\)
\(\Rightarrow AB=\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)
Vì \(II'=\sqrt{25+25}=5\sqrt{2}>6+1=7=R+R'\)
Kẽ II' cắt đường tròn (I) và (I') tại M, N, P, Q.
Ta có: \(NP\le AB\le MQ\)
\(\Leftrightarrow II'-\left(R+R'\right)\le AB\le II'+\left(R+R'\right)\)
\(\Leftrightarrow5\sqrt{2}-7\le AB\le5\sqrt{2}+7\)
\(\Leftrightarrow\left(\sqrt{2}-1\right)^3\le AB\le\left(\sqrt{2}+1\right)^3\)
\(\Rightarrow\left(\sqrt{2}-1\right)^6\le\left(a-c\right)^2+\left(b-d\right)^2\le\left(\sqrt{2}+1\right)^6\)
chú ý : đề sai
Uả đề sai thì sao làm được?!