Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.b=a.c =>a/b=b/c
c.c= b.d => b/c=c/d
=> a/b = b/c = c/d=>a3/b3=b3/c3= c3/d3=> a3+b3+c3/b3+c3+d3
Mặt khác : a3/b3=a.b.c / b.c.d = a/d
=> ĐPCM
MỆT À nha !! Please DUYỆT
Ta có : (a3 +b3+c3)/(b3 +c3 +d3)
= a3 /b3 = b3/c3=c3/d3
mà b2 =ac ; c2 = bd
=>b3/c3 =bac/cbd = a/d
=>(a3 +b3+c3)/(b3 +c3 +d3) /a/d
Từ \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
\(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) suy ra Đpcm
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}vàc^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bắng nhau
Do đó :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)1
Vì :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{c}=\frac{a}{d}\)2
Từ 1 và 2 => Ta có điều phải chứng minh
TICK MÌNH NHA !
Ta có:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Ta có : \(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\)
\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Từ \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=b.d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\) \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}\)
hay \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)(3)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(4)
Từ (3) và (4) \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(điều phải chứng minh)