\(\dfrac{x+1}{x^2-2x+1}+\dfrac{1}{x-1}\)):\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2022

\(Q=\left(\dfrac{x+1}{\left(x-1\right)^2}+\dfrac{1}{x-1}\right).\dfrac{x-1}{x}-\dfrac{2}{x-1}=\left(\dfrac{2}{x-1}\right)-\left(\dfrac{2}{x-1}\right)=0\)

Câu 1: 

a: ĐKXĐ: \(x\notin\left\{0;1;\dfrac{1}{2}\right\}\)

\(B=\dfrac{x^2+x}{x^2+x+1}-\dfrac{2x^3+x^2-x-2x^3+2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}-\dfrac{-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{-x}{x^2+x+1}=\dfrac{x^2}{x^2+x+1}\)

b: Để \(B=\dfrac{4}{3}\) thì \(\dfrac{x^2}{x^2+x+1}=\dfrac{4}{3}\)

\(\Leftrightarrow4x^2+4x+4-3x^2=0\)

=>x=-2(nhận)

26 tháng 4 2018

sai đề xem lại nha

18 tháng 12 2017

Phân thức đại số

26 tháng 12 2017

a, Rút gọn Biểu thức:

A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)

= 0 \(:\dfrac{2x}{x2+2x}\)

b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

Thay tất cả x= -4

=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)

= -16 : \(\dfrac{1}{3}\)

= -18

26 tháng 12 2017

Hỏi đáp Toán

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

\(A=\left(\dfrac{x+y}{y}+\dfrac{2y}{x-y}\right)\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\left(\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\right)\cdot\dfrac{1-2x}{x+2}\)

\(=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{x+2}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)

\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)

20 tháng 2 2018

a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^2-1}{2}\left(ĐKXĐ:x\ne\pm1\right)\)

\(A=\left[\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right].\dfrac{\left(x+1\right)\left(x-1\right)}{2}\)

\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\dfrac{\left(x+1\right)\left(x-1\right)}{2}\)

\(A=\left[\dfrac{x^2+x-2x-2-\left(x^2-x+2x-2\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\dfrac{\left(x+1\right)\left(x-1\right)}{2}\)

\(A=\left[\dfrac{x^2-x-2-x^2-x+2}{\left(x+1\right)^2\left(x-1\right)}\right].\dfrac{\left(x+1\right)\left(x-1\right)}{2}\)

\(A=\dfrac{-2x}{\left(x+1\right)^2\left(x-1\right)}.\dfrac{\left(x+1\right)\left(x-1\right)}{2}\)

\(A=\dfrac{-2x}{2\left(x+1\right)}\)

P/s: câu b bn tự làm nha

20 tháng 2 2018

a.

\(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\dfrac{x^2-1}{2}\)

\(A=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right).\dfrac{x^2-1}{2}\)

\(A=\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^2}-\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}\right).\dfrac{x^2-1}{2}\)

\(A=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{x^2-1}{2}\)

\(A=\dfrac{-2x}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2}\)

\(A=\dfrac{-x}{x+1}\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

4 tháng 8 2018

mk nghỉ bài này đề sai

a) điều kiện : \(x\ne0;x\ne-1;x\ne2\)

ta có : \(A=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}+\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)

\(\Leftrightarrow A=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{2}{x+1}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{x+1+x+1+2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{2x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2-x+1}{x\left(x-2\right)}\) \(\Leftrightarrow A=1+\dfrac{2x^2+4}{x\left(x+1\right)\left(x-2\right)}=\dfrac{2x^2+4+x\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\dfrac{x^3+x^2-2x+4}{x\left(x+1\right)\left(x-2\right)}\)

b) ta có : \(\left|x-\dfrac{3}{4}\right|=\dfrac{5}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{5}{4}\\x-\dfrac{3}{4}=\dfrac{-5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=\dfrac{-1}{2}\end{matrix}\right.\)

thế vào \(A\) ta có : \(A=\dfrac{41}{5}\)

vậy ...............................................................................................................