K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

\(P=\frac{1}{1999.2000}-\frac{1}{1998.1999}-...-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=\frac{1}{1999}-\frac{1}{2000}-\frac{1}{1998}+\frac{1}{1999}-\frac{1}{1997}+\frac{1}{1998}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(P=\frac{2}{1999}-\frac{1}{2000}-1\)

\(P+\frac{1997}{1999}=\frac{2}{1999}+\frac{1997}{1999}-\frac{1}{2000}-1=1-1-\frac{1}{2000}=-\frac{1}{2000}\)

4 tháng 1 2017

ko biet

12 tháng 3 2017

-1/2000

12 tháng 3 2017

\(P=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Rightarrow P=\dfrac{1}{1999.2000}-\dfrac{1}{1998.1999}-\dfrac{1}{1997.1998}-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)

\(\Rightarrow P=\dfrac{1}{1999}-\dfrac{1}{2000}-\dfrac{1}{1998}+\dfrac{1}{1999}-\dfrac{1}{1997}+\dfrac{1}{1998}-...-1+\dfrac{1}{2}\)

\(\Rightarrow P=\dfrac{2}{1999}-\dfrac{1}{2000}-1\)

\(\Rightarrow P+\dfrac{1997}{1999}=\dfrac{2}{1999}+\dfrac{1997}{1999}-\dfrac{1}{2000}-1\)

\(\Rightarrow P+\dfrac{1997}{1999}=1-1-\dfrac{1}{2000}=\dfrac{-1}{1200}\)

Vậy \(P+\dfrac{1997}{1999}=\dfrac{-1}{2000}\)

13 tháng 2 2017

Số hạng đầu tiên không theo quy luật hả (+) hày (-) đề thế nào làm vậy:

\(P=\frac{1}{2000.1998}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{1998.1999}\right)=\frac{1}{1999.2000}-Q\)

Tổng quát ta có \(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}\) với dãy trên ta luôn có b-a=1

\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-.....-\frac{1}{1999}\)

\(Q=1-\frac{1}{1999}\Rightarrow P=\frac{1}{1999.2000}-1+\frac{1}{1999}=\frac{1-1999.2000+2000}{1999.2000}=\frac{1-1998.2000}{1999.2000}\)

\(P+\frac{1997}{1998}=\frac{1997}{1998}+\frac{1-1998.2000}{1999.2000}\) xem lại đề

29 tháng 12 2016

Hôm kia giải thi chơi được 260, làm được bài này luôn. Hôm sau, làm lại chả biết làm.

27 tháng 1 2017

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)

\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)

\(=\frac{-1}{2000}\)

27 tháng 1 2017

P= \(\frac{1}{2000.1999}\)-  (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

  = \(\frac{-1997}{1999}-\frac{1}{2000}\)

 =) P + \(\frac{1997}{1999}\)\(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)

1 tháng 1 2017

Ta có:

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow P=\frac{-1997}{1999}-\frac{1}{2000}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1997}{1999}-\frac{1}{2000}+\frac{1}{1997}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{2000}\)

Vậy....

19 tháng 7 2015

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{3998000}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{3998000}-\left(1-\frac{1}{1999}\right)=\frac{1}{3998000}-\frac{1998}{1999}\)

Chỉ nên ghi ra bấy nhiêu. không nên ghi ra đáp án nữa nha bạn ^^ Thầy mình dặn vậy đó ^^

27 tháng 12 2016

3) 2x3-1=15 <=> x3=16/2=8=23 => x=2

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)

=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)

Vậy x+y+z=100

27 tháng 12 2016

Mọi người giúp tôi ik mai tôi phải thi rồi !

22 tháng 10 2017

Trùng nên mk sẽ xóa

22 tháng 10 2017

\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{9998.1997}-............-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(\dfrac{1}{1999.1998}+\dfrac{1}{1998.1997}+........+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{1999}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\dfrac{1998}{1999}\)

22 tháng 10 2017

\(A=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)\(A=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}\right)\)

\(A=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)

\(A=\dfrac{1}{1999.2000}-\dfrac{1998}{1999}\)

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)

\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+..+\frac{1}{3.2}+\frac{1}{2.1}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{1999}-\frac{1}{2000}\)

=\(1-\frac{1}{2000}\)

=\(\frac{1999}{2000}\)