K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

M nguyên <=>\(\sqrt{x}+1\ge1\)là ước của 5 hay  \(\sqrt{x}+1=5;\sqrt{x}+1=1;\)

<=> x= 16; x= 0

25 tháng 9 2021

a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)

26 tháng 9 2021

\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)

26 tháng 9 2021

a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)

b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Kết hợp đk: 

\(\Rightarrow0\le x< 1\)

c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)

\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)

\(\Rightarrow x\in\left\{0;4\right\}\)

6 tháng 7 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)

\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)

\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)

Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)

6 tháng 7 2019

\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)

\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)

\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)

\(M=\frac{x-2\sqrt{x}+1}{x-1}\)

\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)

25 tháng 12 2021

\(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

Để A là số nguyên thì \(\sqrt{x}+1=1\)

hay x=0

AH
Akai Haruma
Giáo viên
25 tháng 12 2021

Lời giải:
\(A=\frac{\sqrt{x}+1+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\frac{2(\sqrt{x}+1)-1}{\sqrt{x}+1}=2-\frac{1}{\sqrt{x}+1}\)

Để $A$ nguyên thì $\frac{1}{\sqrt{x}+1}$ nguyên.

Với $x$ nguyên thì điều này xảy ra khi mà $\sqrt{x}+1$ là ước của $1$

$\Rightarrow \sqrt{x}+1=1$ (do $\sqrt{x}+1$ dương)

$\Rightarrow x=0$

6 tháng 7 2019

a.

\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b.

\(M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\\ \Leftrightarrow\frac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Vậy với \(0\le x< 9;x\ne1\) thì ..........

30 tháng 10 2023

bạn ơi sao bước gộp lại chung mẫu (câua) -4 lại thành +4 vậy ạ

Ta có: \(P=A\cdot B\)

\(=\dfrac{\sqrt{x}+7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}+7}{x+3\sqrt{x}+2}\)

Đề thiếu rồi bạn

25 tháng 8 2021

đúng mà bạn

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

18 tháng 5 2019

\(A-B=\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{1-\sqrt{x}}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\frac{\left(\sqrt{x}+1\right)^2}{x-1}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2x-2\sqrt{x}+x+2\sqrt{x}+1+3\sqrt{x}-1}{x-1}=\frac{3x+3\sqrt{x}}{x-1}=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-1}\)

Để \(M< 4\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-1}< 4\)

Nếu x>=1

\(\Rightarrow3\sqrt{x}\le4\sqrt{x}-4\)

\(\Leftrightarrow4\le\sqrt{x}\)

\(\Leftrightarrow x\le16\)

Nếu x<1

\(\Rightarrow3\sqrt{x}>4\sqrt{x}-4\)

\(\Leftrightarrow4>\sqrt{x}\)

\(\Rightarrow16>x\)

Ko có x thỏa mãn