K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

Đk:\(x>0;x\ne1\)

\(B=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)\(\Leftrightarrow x=9\) (tm)

Vậy..

29 tháng 6 2021

 

a) \(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(B=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(B=\dfrac{1}{\sqrt{x}-1}\)

b) Với \(B=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\)

Vậy...

Chúc bạn học tốt

NV
12 tháng 8 2021

\(B=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+1}{\sqrt{x}}\)

Để \(B< 0\Rightarrow\dfrac{x+1}{\sqrt{x}}< 0\)

\(\Rightarrow x+1< 0\) (vô lý do \(x>0\))

Vậy ko tồn tại x thỏa mãn yêu cầu

a) Ta có: \(B=\left(\dfrac{3}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3\sqrt{x}-6-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-8}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để \(B=\dfrac{1}{3}\) thì \(\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}=\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(\Leftrightarrow x=1\)(thỏa ĐK)

27 tháng 7 2021

a) B= \(\left(\dfrac{3\left(\sqrt{x}-2\right)-1\left(\sqrt{x}+2\right)}{x-4}\right):\left(\dfrac{\sqrt{x}-6+1\left(\sqrt{x}-2\right)}{x-2\sqrt{x}}\right)\)

   \(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{2\sqrt{x}-8}\)=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để B=\(\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2=3\sqrt{x}\Rightarrow x=1\)

9 tháng 7 2021

`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`

`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`

`B=2/(3-sqrtx)`

`B>1/2`

`<=>2/(3-sqrtx)-1/2>0`

`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`

`<=>(sqrtx+1)/(2(3-sqrtx))>0`

Mà `sqrtx+1>=1>0`

`<=>2(3-sqrtx)>0`

`<=>3-sqrtx>0`

`<=>sqrtx<3`

`<=>x<9`

14 tháng 7 2021

\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{x+1}\)

\(=\dfrac{2}{x-1}.\dfrac{x-1}{x+1}=\dfrac{2}{x+1}\)

Để \(B< 1\Rightarrow\dfrac{2}{x+1}< 1\Rightarrow1-\dfrac{2}{x+1}>0\Rightarrow\dfrac{x-1}{x+1}>0\)

mà \(x+1>0\left(x\ge0\right)\Rightarrow x-1>0\Rightarrow x>1\)

24 tháng 6 2021

Ta có : \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}-1}\right)=\dfrac{1}{\sqrt{x}}\)

24 tháng 6 2021

B = \(\left[\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}}\)

a: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)

b: Để A=5 thì \(x+4=5\sqrt{x}\)

=>x=1(loại) hoặc x=16(nhận)

30 tháng 7 2021

a) \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=-\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

b) \(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thế vào B \(\Rightarrow B=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

a) Ta có: \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3