\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

27 tháng 2 2020

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{25}{2}\)

Dấu "=" xảy ra tại x=y=1/2

28 tháng 2 2020

Bạn giải thích rõ hơn được không? Mình không hiểu lắm :(((

24 tháng 11 2016

Xình lỗi bài 1 đề \(\frac{2}{x^2-1}\) nha !

25 tháng 11 2016

2) bổ đề : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (x,y > 0)

\(< =>\frac{\left(x+y\right)^2-4xy}{xy\left(x+y\right)}\ge0< =>\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)

Dấu "=" xảy ra <=> x=y

\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)

Dấu "=" xảy ra <=> \(a^2=b^2\)

Ta có hệ \(\hept{\begin{cases}a^2=b^2\\a^2+b^2=10\end{cases}}< =>a=b=\sqrt{5}\left(do.a>b>0\right)\)

Vậy minQ=2/5 khi \(a=b=\sqrt{5}\)

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3}{x-1}=0\)

=> PT vô nghiệm