![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-3\Leftrightarrow2n-7=-3\left(n-2\right)\Leftrightarrow2n-7=-3n+6\Leftrightarrow5n=13\)
\(\Leftrightarrow n=\frac{13}{5}\text{ không là số nguyên do đó vô nghiệm}\)
A = 2n-7/n-2 để A = 3
=> 2n-7/n-2 = 3
=> 2n - 7 = 3(n - 2)
=> 2n - 7 = 3n - 6
=> n = -1
vậy_
![](https://rs.olm.vn/images/avt/0.png?1311)
A nguyen suy ra 2n+3 chia het cho n-2
suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2
n thuoc tap hop [3 ,1 ,9,-5]
hoc tot
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)
Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất
\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)
\(\Leftrightarrow n=3\)
Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)
Vậy MAX A =9 \(\Leftrightarrow x=3\)
(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)
\(\Rightarrow-n-7+n-2⋮n-2\)
\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)
Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)
b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)
\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)
\(\Rightarrow n-6-n-5⋮n+5\)
\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)
Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)
\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)
(Mấy dạng này bạn cứ làm sao để bỏ n là được)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
\(\frac{2n-7}{n-2}=-3\)
( n khác 2)
\(\frac{2n-7}{n-2}=-3\)
<=> \(2n-7=-3\left(n-2\right)\)
<=> 2n + 3n = 7 + 6
<=> 5n = 13
<=> n = 13/5 loại vì n không phải là số nguyên.