\(\sqrt{\frac{2x+3}{x-3}}\)và B= \(\frac{\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

a) A có nghĩa khi (2x+3)/(x-3)>= 0

Trường hợp 1:

2x+3>=0 

x>= -3/2(1)

×-3>0

x>3(2)

Từ (1),(2)suy ra x>3

●trường hợp 2

 2x+3<= 0

x<=-3/2(3)

x-3<0

x<3(4)

Từ (3),(4) suy ra x<=-3/2

Vậy khi x<=-3/2 hoặc x>3 thì A có nghĩa

B có nghĩa khi (2x+3)/(x_3)>=0

•TH1:

2x+3>=0

x>= -3/2(5)

x-3>0

x>3(6)

Từ (5),(6) suy ra x>3

•TH2:

2x+3<=0

x<=-3/2

Vậy khi x<=-3/2 hoặc x>3 thì B có nghĩa

b) A=B khi x<= -3/2 và x>3 

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

30 tháng 7 2019

a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)

\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)

Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)

hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)

A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)

+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

30 tháng 7 2019

c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

Vậy \(x\ge1\)thì A = B

d) \(x\le\frac{1}{2}\)

            Đề kiểm tra 1 tiết Đại số 9 chương 1 – Đề số 1Bài 1 (2.5 điểm)1) Nêu điều kiện để √a có nghĩa ? \(\sqrt{a}\) có nghĩa (0.5)2) Áp dụng: Tìm x để các căn thức sau có nghĩa: ( 2 )a) \(\sqrt{2x+6}\)b) \(\sqrt{\frac{-2}{2x-3}}\)Bài 2: ( 3 điểm ): Rút gọn biểu thức:a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)(1)b) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)(1)c) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\)(1)Bài...
Đọc tiếp

            Đề kiểm tra 1 tiết Đại số 9 chương 1 – Đề số 1

Bài 1 (2.5 điểm)

1) Nêu điều kiện để √a có nghĩa ? \(\sqrt{a}\) có nghĩa (0.5)

2) Áp dụng: Tìm x để các căn thức sau có nghĩa: ( 2 )

a) \(\sqrt{2x+6}\)

b) \(\sqrt{\frac{-2}{2x-3}}\)

Bài 2: ( 3 điểm ): Rút gọn biểu thức:

a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)(1)

b) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)(1)

c) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\)(1)

Bài 3 ( 4.5 điểm ) Cho biểu thức

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)   

 đkxđ : \(x>0;x\ne4;x\ne1\)

a/ Rút gọn P. (1.5)

b/ Với giá trị  nào của x thì P có giá trị bằng 1/4  (1.5)

c/ Tính giá trị của P tại  x = 4 + 2√3 (1)

d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ? (0.5)

 

4
19 tháng 10 2017

Bài 1:

1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)

2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)

\(\Leftrightarrow2x\ge-6\)

\(x\ge-3\)

b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)

có -2 < 0

\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)

\(\Rightarrow x< \frac{3}{2}\)

19 tháng 10 2017

Bài 4 :

\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)

b) \(P=\frac{1}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)

\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=8\)

\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)

Vậy khi \(P=\frac{1}{4}\) thì x=64