Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
:>> sáng hnay lm, cô ns : đây là cách giải lp ... cao hơn, nó cx nằm trog phần nâng cao lp 7
=>> cô ns : Giair đc thì càng tốt chứ sao (kaka)
\(-x^4-x^2-1=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(-t^2-t-1=0\)
Ta có : \(\left(-1\right)^2-4.\left(-1\right).\left(-1\right)=-3< 0\)
Vậy phương trình vô nghiệm
nâng cao lớp 7 ? rõ ràng đó là delta của lớp 9 =)) không có ý cà khịa :D
\(-x^4-x^2-1=\left(-x^4\right)+\left(-x^2\right)+\left(-1\right)\)
ta có : \(-x^4\le0\);\(-x^2\le0\);\(-1< 0\)
suy ra \(-x^4+\left(-x^2\right)+\left(-1\right)< 0\)
nên đa thức sau vô nghiệm
a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức trên vô nghiệm
a, x^2 + 3
có x^2 > 0 => x^2 + 3 > 3
=> đa thứ trên vô nghiệm
b, x^4 + 2x^2 + 1
x^4 > 0 ; 2x^2 > 0
=> x^4 + 2x^2 > 0
=> x^4 + 2x^2 + 1 > 1
vậy _
c, -4 - 3x^2
= -(4 + 3x^2)
3x^2 > 0 => 3x^2 + 4 > 4
=> -(4 + 3x^2) < 4
vậy_
a)\(P\left(1\right)=x^4+3x^2+3=1^4+3.1^2+3=7\)
\(P\left(-1\right)=\left(-1\right)^4+3\left(-1\right)^2+3=7\)
b)\(P\left(x\right)=x^4+3x^2+3=0\)
\(\Leftrightarrow x^4+3x^2=-3\)
mà x4 và 3x2 \(\ge\) 0
=> đa thức đã cho vô nghiệm
c)\(P\left(x\right)=x^4+3x^2+3 \)
Ta có:\(x^4\ge0;3x^2\ge0\)
\(\Rightarrow P\left(x\right)=x^4+3x^2+3\ge3\)
=> GTNN của P(x)=3 khi x=0
\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=1\) (1)
\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z}{x+y+z}+\dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}=2\)(2)
Từ (1) và (2) ta có đpcm
Để \(A\in Z\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bạn kẻ bảng ra rồi két luận
Để \(A\in Z\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\left\{\pm1;\pm2;\pm4\right\}\)
Kẻ bảng ra dã rồi mới kết luận nha
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
liink:https://olm.vn/hoi-dap/question/675093.html
Ta có \(y^4\ge0\)với mọi giá trị của x
=> \(y^4-2\ge0-2< 0\)với mọi giá trị của x
=> \(y^4-2\)vô nghiệm (đpcm)