Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (3,1 – 2,5) – (-2,5 + 3,1) = 3,1 – 2,5 + 2,5 – 3,1 = 0
B = (5,3 – 2,8) – (4 + 5,3) = 5,3 – 2,8 – 4 – 5,3
A=(3,1-2,5)-(-2,5+3,1)=3,1-2,5+2,5-3,1=0
B=(5,3-2,8)-(4+5,3)=5,3-2,8-4-5,3=-6,8
a) Có \(\left(x-1\right)^2\ge0\)
<=> A \(\ge2014\)
Dấu "=" <=> x = 1
b) Có \(\left|x+4\right|\ge0\)
<=> B \(\ge2014\)
Dấu "=" <=> x = -4
a) \(A=\left(x-1\right)^2+2014\ge2014\)
Dấu = xảy ra khi x = 1
b) \(B=\left|x+4\right|+2014\ge2014\)
Dấu = xảy ra khi x = -4
Ta có:
a+b-c/c = b+c-a/a = c+a-b/b
=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2
=>a+b-c/c + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b
=>a+b+c/c = a+b+c/a =a+b+c/b
* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)
b= 0-a-c= -(a+c)
c= 0-b-a= -(b+a)
Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được
B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b
=(-c)/a * (-b)/c * (-a)/b =-1
* Nếu a+b+c\(\ne\)0 thì a=b=c
Khi đó
B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8
Vậy B=-1 hoặc B=8
nhớ k nha bạn
https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/
vào đây gợi ý nhé
k mik đi
@_@
Bài 1:
Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.
Sửa đề:
\(A=(x+3)^3-(x+9)(x^2+27)\)
\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)
\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)
\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)
\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)
\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)
\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)
Bài 2:
Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
CMR: \(\frac{a}{x}=\frac{b}{y}\)
Bạn lưu ý viết đề bài chính xác hơn.
-----------------------------
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)
\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)
Ta có đpcm.
a) \(\left( {\frac{7}{3} + 3,5} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + 0,5\)
\(\begin{array}{l} = \left( {\frac{7}{3} + \frac{7}{2}} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 25.7 + 22.6}}{{6.7}} + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 43}}{{7.6}} + \frac{1}{2} = \frac{{35}}{6}.\frac{{7.6}}{{ - 43}} + \frac{1}{2}\\ = \frac{{ - 245}}{{43}} + \frac{1}{2} = \frac{{ - 245.2 + 43}}{{43.2}} = \frac{{ - 447}}{{86}}\end{array}\)
b) \(\frac{{38}}{7} + \left( { - 3,25} \right) - \frac{{17}}{7} + 4,55\)
\(\begin{array}{l} = \left( {\frac{{38}}{7} - \frac{{17}}{7}} \right) + \left( {4,55 - 3,25} \right)\\ = \frac{{38 - 17}}{7} + 1,3 = \frac{{21}}{7} +1,3\\ = 3 + 1,3 = 4,3\end{array}\)