K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\) ( 2/6 = 1/3;2/12=1/6;1/10=2/20;...)

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(1-2.\frac{1}{x+1}=\frac{2007}{2009}\)

\(\frac{2}{x+1}=1-\frac{2007}{2009}\)

\(\frac{2}{x+1}=\frac{2}{2009}\)

=> x +1  = 2009

x= 2008

20 tháng 7 2018

<p>2x[1/6+1/12+1/20+....+1/Xx[x-1]=2007/2008</p><p>2x[1/2x3+1/3x4+1/4x5+....+1/Xx[x-1]=2007/2008</p><p>2x[1/2-1/3+1/3-1/4+1/4-1/5+....+1/[x-1]xX=2007/2008</p><p>1/2-1/x=2007/2008x1/2</p><p>1/2-1/x=2007/4016</p><p>2x[1/2-1/x]=2007/2008</p><p>1/x=1/2-2007/4016 1/x=1/4016.Vay x=4015

6:=(3/2)*(3/2)^2*(3/2)^4=(3/2)^7

7: =(1/2)^7*2^3*2^5*2^8=2^9

8: =(-1/7)^4*5^4=(-5/7)^4

9: =2^2*2^5:(2^3/2^4)

=2^7/2=2^6

10: =(1/7)^3*7^2=1/7

8 tháng 4 2016

Ta có :\(\frac{1}{3}+\frac{1}{6}+..+\frac{2}{x\left(x+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)

          = 2 x \(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...\frac{1}{x\left(x+1\right)}\right)=2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)\)

          = 2 x (\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

          = 2 x (\(\frac{1}{2}-\frac{1}{x+1}\)

       Khi đó chỉ cần giải  2 x\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)

12 tháng 5 2016

Đặt vế trái là A ta có:

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
 

29 tháng 11 2022

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...

7 tháng 5 2015

ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)

giải 1-2/(x+1) = 2007/2009 ta được x=2008

DD
15 tháng 5 2021

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}\)

\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)

\(=1-\frac{2}{x+1}\)

Phương trình ban đầu tương đương với: 

\(1-\frac{2}{x+1}=\frac{2007}{2009}\)

\(\Leftrightarrow x=2008\)