Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne0;x\ne\pm2\)
a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)
b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)
Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)
c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy x=3/2 thì A=2
d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy với x>2 thì A<0
e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}
Ta có: x-2=1 => x=3 (t/m)
x-2=-1 => x=1 (t/m)
Vậy x thuộc {3;1} thì A thuộc Z
a) \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)
\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)
\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)
Vậy \(A=\frac{1}{2-x}.\)
b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)
Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...
c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...
d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...
e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)
Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)
Vậy x=1 hay x=3 thì A nguyên.
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)
\(P=\left(\frac{x^2}{x^3-4x}-\frac{10}{5x+10}-\frac{1}{2-x}\right):\)\(\left(x+2+\frac{6-x^2}{x-2}\right)\)
\(=\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{10}{5\left(x+2\right)}+\frac{1}{x-2}\right)\)\(:\left(\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{6-x^2}{x-2}\right)\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x^2-4+6-x^2}{x-2}\right)\)
\(=\frac{x-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}:\frac{2}{x-2}\)
\(=\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right).2}=\frac{3}{x+2}\)
\(b,P\in Z\Leftrightarrow\frac{3}{x+2}\in Z\Rightarrow3\)\(⋮\)\(x+2\Rightarrow x+2\inƯ_3\)
MÀ \(Ư_3=\left\{\pm1;\pm3\right\}\)
TH1 : \(x+2=-1\Rightarrow x=-3\)
Th2 : \(x+2=1\Rightarrow x=-1\)
Th3 : \(x+2=-3\Rightarrow x=-5\)
Th4 : \(x+3=3\Rightarrow x=0\left(ktm\right)\)
Vậy để P có giá trị nguyên thì x thuộc { - 3 ; - 5 ;- 1 }
\(c,P=-1\Leftrightarrow\frac{3}{x+2}=-1\)
\(\Rightarrow\frac{3}{x+2}=\frac{-1}{1}\Rightarrow3=-1\left(x+2\right)\)
\(\Rightarrow-x-2=3\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
Vậy để P = -1 thì x = - 5
\(d,P>0\Leftrightarrow\frac{3}{x+2}>0\)
Vì \(x+2>0\)nên để \(\frac{3}{x+2}>0\)thì \(x+2>0\)
\(\Rightarrow x>-2\)
Vậy để \(P>0\)thì \(x>2\) và \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(đk\hept{\begin{cases}\left(x+2\right)\left(x-2\right)x\ne0\\x+2\ne0\end{cases}< =>x\ne0;x\ne\pm}2\)
P=\(\left(\frac{x}{x^2-4}-\frac{10\left(x-2\right)}{5\left(x+2\right)\left(x-2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right):\)\(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{6-x^2}{x+2}\)
=\(\frac{x-2\left(x-2\right)+x+2}{\left(x-2\right)\left(x+2\right)}:\left(\frac{x^2-4+6-x^2}{x+2}\right)\)=\(\frac{6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{3}{x-2}\)
b) P \(\in Z\)<=> x-2=3;x-2=-3;x-2=1;x-2=-1 <=> x=5; x=-1; x=3; x=1 (thỏa mãn điều kiện ban đầu)
c) P=1 <=> x-2=3 <=> x=5 (thỏa mãn điều kiện)
d) P>0 <=> x-3 >=0 <=> x>3 kết hợp với điều kiện ban đầu => x>3