Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn :
P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)
\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)
\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)
b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)
* TH1 : x \(\ge0\)
\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)
* TH2 : x < 0
\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)
c) Để P = \(\dfrac{-1}{2}\) thì :
\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x+8=3-x\)
\(\Leftrightarrow2x+x=-8+3\)
\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)
d) P \(\le\) 2
<=> \(\dfrac{x+4}{x-3}\le2\)
\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)
\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)
Lập bang xét dấu và tìm x nhé!!
Lời giải:
ĐKXĐ: \(x\neq \left\{2;\pm 3\right\}\)
a) Ta có:
\(P=\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x(x-3)}{(x-3)(x+3)}-1\right):\left(\frac{(3-x)(3+x)}{(x-2)(x+3)}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x}{x+3}-1\right):\left(\frac{3-x}{x-2}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\frac{x-(x+3)}{x+3}:\left(-\frac{x-2}{x+3}\right)=\frac{-3}{x+3}.\frac{x+3}{-(x-2)}=\frac{3}{x-2}\)
b) \(x^3-3x+2=0\)
\(\Leftrightarrow (x^3-x)-2(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-2(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-2)=0\)
\(\Leftrightarrow (x-1)[(x^2-1)+(x-1)]=0\)
\(\Leftrightarrow (x-1)^2(x+2)=0\) \(\Leftrightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)
Với \(x=1\Rightarrow P=\frac{3}{1-2}=-3\)
Với \(x=-2\Rightarrow P=\frac{3}{-2-2}=\frac{-3}{4}\)
c)
\(P=\frac{3}{x-2}\in\mathbb{Z}\Leftrightarrow 3\vdots x-2\)
\(\Leftrightarrow x-2\in \text{Ư}(3)\Rightarrow x-2\in\left\{\pm 1; \pm 3\right\}\)
\(\Leftrightarrow x\in \left\{3,1,5,-1\right\}\)
Do \(x\neq 3\Rightarrow x\in \left\{-1,1,5\right\}\)
a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2
Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2
a/ đkxđ: x \(\ne\pm\)2; x≠3
\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\left(\dfrac{\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}+\dfrac{4x^2}{x^2-4}\right):\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)
\(=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{x-3}\)
\(=\dfrac{8x+4x^2}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x\left(2+x\right)}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x}{x-3}\)
b/ x = \(\dfrac{1}{3}\Leftrightarrow P=\dfrac{4\cdot\dfrac{1}{3}}{\dfrac{1}{3}-3}=\dfrac{4}{3}:\left(-\dfrac{8}{3}\right)=\dfrac{4}{3}\cdot\left(-\dfrac{3}{8}\right)=-\dfrac{4}{8}=-\dfrac{1}{2}\)
c/ \(P\in Z\Rightarrow\dfrac{4x}{x-3}\in Z\)
Ta có: \(\dfrac{4x}{x-3}=\dfrac{4x-12+12}{x-3}=\dfrac{4\left(x-3\right)}{x-3}+\dfrac{12}{x-3}=4+\dfrac{12}{x-3}\)
=> \(x-3\inƯ\left(12\right)\) thì P ∈ Z
=> \(x-3=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Leftrightarrow x=\left\{-9;-3;-1;0;1;2;4;5;6;7;9;15\right\}\)
mà x>4
=> x = {5;6;7;9;15}
a, Ta có:
\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{4-x^2}\right):\left[\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\right]\)
\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{2-x}\)
\(=\dfrac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4+4x+x^2-\left(4-4x+x^2\right)+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x}{x-3}\)
\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)
\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
đkxđ: x\(\ne\pm3\)
a/ \(P=\left(\dfrac{x}{x+3}-\dfrac{x^2+5}{x^2-9}+\dfrac{7}{x-3}\right)\cdot\dfrac{x+3}{4}=\left(\dfrac{x\left(x-3\right)-x^2-5+7\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x+3}{4}=\dfrac{x^2-3x-x^2-5+7x+21}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{4}=\dfrac{4x+16}{x-3}\cdot\dfrac{1}{4}=\dfrac{4\left(x+4\right)}{4\left(x-3\right)}=\dfrac{x+4}{x-3}\)
b/ tại x = 5 thì:
\(P=\dfrac{5+4}{5-3}=\dfrac{9}{2}\)
c/ Ta có: \(\dfrac{x+4}{x-3}=\dfrac{x-3+7}{x-3}=\dfrac{x-3}{x-3}+\dfrac{7}{x-3}=1+\dfrac{7}{x-3}\)
để P ∈ Z thì \(\dfrac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)\)
=> x - 3 = {-7;-1;1;7}
=> x = {-4;2;4;10}
Vậy.............