Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(a>0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}.\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
a) \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\frac{\sqrt{a}.\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right).\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1=a-\sqrt{a}\)
b)Ta có a>0 do đó: \(P=a-\sqrt{a}\ge0\)
Dấu "=" xảy ra khi a=1
c) Ta thấy \(P\ge0\)
=>P2\(\ge\)P
=>P\(\ge\)\(\sqrt{P}\)
ĐKXĐ: \(a>0\)
a/ \(P=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
b/ Ta có: \(\hept{\begin{cases}a>0\\\sqrt{a}\ge0\end{cases}\Rightarrow a-\sqrt{a}\ge0}\)
MinP = 0 khi \(\sqrt{a}=0\Rightarrow a=0\)
c/ \(P\ge\sqrt{P}\)
a) điều kiện : \(a>0\)
ta có : \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(\Leftrightarrow P=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{2a+2\sqrt{a}}{\sqrt{a}}+1\)
\(\Leftrightarrow P=a+\sqrt{a}-2\sqrt{a}-2=a-\sqrt{a}-2\)
b) ta có : \(a>1\Rightarrow a>\sqrt{a}>1\Rightarrow a-\sqrt{a}>0\Rightarrow a-\sqrt{a}-2>-2\)
\(\Rightarrow\left|P\right|\ge P\) dấu "=" xảy ra khi \(a-\sqrt{a}>2\)
c) ta có : \(P=2\Leftrightarrow a-\sqrt{a}-2=2\Leftrightarrow a-\sqrt{a}-4=0\)
ta có : \(\Delta=1^2-4\left(-4\right)=17>0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(a=\dfrac{1+\sqrt{17}}{2};a=\dfrac{1-\sqrt{17}}{2}\)
vậy.................................................................................................................
d) ta có : \(P=a-\sqrt{a}-2\Leftrightarrow a-\sqrt{a}-2-P=0\)
ta có phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\Leftrightarrow1^2-4\left(-2-P\right)\ge0\)
\(\Leftrightarrow4P+9\ge0\Leftrightarrow P\ge\dfrac{-9}{4}\)
\(\Rightarrow\) giá trị nhỏ nhất của \(P\) là \(\dfrac{-9}{4}\) ; dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{-b}{2a}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)