\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

a) điều kiện : \(a>0\)

ta có : \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(\Leftrightarrow P=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{2a+2\sqrt{a}}{\sqrt{a}}+1\)

\(\Leftrightarrow P=a+\sqrt{a}-2\sqrt{a}-2=a-\sqrt{a}-2\)

b) ta có : \(a>1\Rightarrow a>\sqrt{a}>1\Rightarrow a-\sqrt{a}>0\Rightarrow a-\sqrt{a}-2>-2\)

\(\Rightarrow\left|P\right|\ge P\) dấu "=" xảy ra khi \(a-\sqrt{a}>2\)

c) ta có : \(P=2\Leftrightarrow a-\sqrt{a}-2=2\Leftrightarrow a-\sqrt{a}-4=0\)

ta có : \(\Delta=1^2-4\left(-4\right)=17>0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(a=\dfrac{1+\sqrt{17}}{2};a=\dfrac{1-\sqrt{17}}{2}\)

vậy.................................................................................................................

d) ta có : \(P=a-\sqrt{a}-2\Leftrightarrow a-\sqrt{a}-2-P=0\)

ta có phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\Leftrightarrow1^2-4\left(-2-P\right)\ge0\)

\(\Leftrightarrow4P+9\ge0\Leftrightarrow P\ge\dfrac{-9}{4}\)

\(\Rightarrow\) giá trị nhỏ nhất của \(P\)\(\dfrac{-9}{4}\) ; dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{-b}{2a}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
6 tháng 8 2018

a) ĐK:  \(a>0\)

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\sqrt{a}.\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

15 tháng 7 2016

a) \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\frac{\sqrt{a}.\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right).\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1=a-\sqrt{a}\)

b)Ta có a>0 do đó: \(P=a-\sqrt{a}\ge0\)

Dấu "=" xảy ra khi a=1

c) Ta thấy \(P\ge0\)

=>P2\(\ge\)P

=>P\(\ge\)\(\sqrt{P}\)

15 tháng 7 2016

ĐKXĐ: \(a>0\)

a/ \(P=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

      \(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

      \(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)

         \(=a-\sqrt{a}\)

b/ Ta có: \(\hept{\begin{cases}a>0\\\sqrt{a}\ge0\end{cases}\Rightarrow a-\sqrt{a}\ge0}\) 

    MinP = 0 khi \(\sqrt{a}=0\Rightarrow a=0\)

c/ \(P\ge\sqrt{P}\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

1 tháng 10 2017

Có đúng không đấy