Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
Vì a>b>0 nên 2a>b
\(\Rightarrow a=2b\)
Thay vào P ta có
\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)
b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)
c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)
d: \(=1-2a-4a=-6a+1\)
a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)
\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)
\(=20\sqrt{2}-33\)
b) câu b đề sai
Lời giải:
a)
\(\sqrt{36(b-2)^2}=\sqrt{6^2(b-2)^2}=6\sqrt{(b-2)^2}=6|b-2|=6(2-b)\) do \(b<2\)
b)
\(\sqrt{b^2(b-1)^2}=\sqrt{b^2}\sqrt{(b-1)^2}=|b||b-1|\)
Do \(b< 0\Rightarrow b,b-1< 0\)
\(\Rightarrow \sqrt{b^2(b-1)^2}=|b||b-1|=-b(1-b)=b(b-1)\)
c) \(\sqrt{a^2(a+1)^2}=\sqrt{a^2}\sqrt{(a+1)^2}=|a||a+1|\)
\(=a(a+1)\) do \(a>0\)
d) \(\sqrt{(2a-1)^2}-4a=|2a-1|-4a\)
Vì \(a< \frac{1}{2}\Rightarrow 2a-1< 0\)
\(\Rightarrow \sqrt{(2a-1)^2}-4a=|2a-1|-4a=(1-2a)-4a=1-6a\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
Ta có : \(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )
Thay vào viểu thức P, ta có :
\(P=\dfrac{2.2b+b}{3.2b-b}=1\)