\(P=\dfrac{2a+b}{3a-b}.\) Với a > b > 0 và \(2\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

Ta có : \(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )

Thay vào viểu thức P, ta có :

\(P=\dfrac{2.2b+b}{3.2b-b}=1\)

7 tháng 6 2017

Ta có

\(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)

\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

Vì a>b>0 nên 2a>b

\(\Rightarrow a=2b\)

Thay vào P ta có 

\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)

7 tháng 6 2017

1 là đúng rùi

24 tháng 9 2018

câu a là j có b mà điều kiện b < 2

b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)

c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)

d: \(=1-2a-4a=-6a+1\)

15 tháng 7 2017

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

16 tháng 7 2017

câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)

= \(-33+20\sqrt{2}\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

Lời giải:

a)

\(\sqrt{36(b-2)^2}=\sqrt{6^2(b-2)^2}=6\sqrt{(b-2)^2}=6|b-2|=6(2-b)\) do \(b<2\)

b)

\(\sqrt{b^2(b-1)^2}=\sqrt{b^2}\sqrt{(b-1)^2}=|b||b-1|\)

Do \(b< 0\Rightarrow b,b-1< 0\)

\(\Rightarrow \sqrt{b^2(b-1)^2}=|b||b-1|=-b(1-b)=b(b-1)\)

c) \(\sqrt{a^2(a+1)^2}=\sqrt{a^2}\sqrt{(a+1)^2}=|a||a+1|\)

\(=a(a+1)\) do \(a>0\)

d) \(\sqrt{(2a-1)^2}-4a=|2a-1|-4a\)

\(a< \frac{1}{2}\Rightarrow 2a-1< 0\)

\(\Rightarrow \sqrt{(2a-1)^2}-4a=|2a-1|-4a=(1-2a)-4a=1-6a\)

a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)

b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)

\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)

c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)

31 tháng 3 2017

a) ĐS: ; b) ĐS: 26; c) ĐS: 12a

d) - = - 6a + 9 -

= - 6a + 9 - = - 6a + 9 - 6│a│.

Khi a ≥ 0 thì │a│= a.

Do đó - = - 6a + 9 -6a = - 12a + 9.

Khi a < 0 thì │a│= a.

Do đó - = - 6a + 9 + 6a = + 9.