Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm2\)
b)
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right).\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right].\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right].\dfrac{x+2}{2}\\ =\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-6}{\left(x-2\right)\left(x +2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-3}{x-2}\)
c) Khi \(A=1\) ta có
\(1=\dfrac{-3}{x-2}\\ \Leftrightarrow x-2=\left(-3\right).1\\ \Leftrightarrow x-2=-3\\ \Leftrightarrow x=-3+2\\ \Leftrightarrow x=-1\)
Vậy \(A=1\Leftrightarrow x=-1\)
ta có
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}\)
điều kiện xác định \(\hept{\begin{cases}x^2-4\ne0\\2-x\ne0\\x+2\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)
b.\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\frac{x+2}{2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=-\frac{3}{x-2}\)
c. khi \(x=1\Rightarrow A=-\frac{3}{x-2}=-\frac{3}{1-2}=3\)
a: \(A=\dfrac{x^2-8x+16-x^2+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-4x}{\left(x+4\right)\left(x-1\right)}\)
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{5x+10+14x-28-20}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19}{2\left(x+2\right)}\\ c,x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{19}{2\left(2-\dfrac{1}{2}\right)}=\dfrac{19}{2\cdot\dfrac{3}{2}}=\dfrac{19}{3}\)
a: \(A=\left(\dfrac{4}{x}-1\right):\left(1-\dfrac{x-3}{x^2+x+1}\right)\)
\(=\dfrac{4-x}{x}:\dfrac{x^2+x+1-x+3}{x^2+x+1}\)
\(=\dfrac{4-x}{x}\cdot\dfrac{x^2+x+1}{x^2+4}=\dfrac{\left(4-x\right)\left(x^2+x+1\right)}{x\left(x^2+4\right)}\)
b: x^4-7x^2-4x+20=0
=>(x-2)^2(x^2+4x+5)=0
=>x=2
Khi x=2 thì \(A=\dfrac{\left(4-2\right)\left(4+2+1\right)}{2\left(4+4\right)}=\dfrac{7}{8}\)
1. \(P=\frac{1}{x+2}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4x+7}{\left(x+2\right)\left(4x+7\right)}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4x+7+1}{\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4x+8}{\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4}{4x+7}\)
2. Bạn ghi rõ đề được không mình k hiểu lắm
\(P=\frac{1}{x+2}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\).
\(P=\frac{4x^2+16x+16}{4x^3+23x^2+44x+18}\)
\(P=\frac{4\left(x+2\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)\left(4x+7\right)}\)
\(P=\frac{4}{4x+7}\)