K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

a) Ta có: 2x2 + 8 = 2(x2 + 4).

8 – 4x + 2x2 – x3

= (8 – x3) - ( 4x - 2x2)

= (2 – x).(4 + 2x + x2) - 2x.(2 - x)

= (2 – x).(4 + 2x + x2 – 2x)

= (2 - x). (4 + x2 )

* Do đó:

b) Tại x = 1 2  hàm số đã cho xác định nên thay  x = 1 2  vào biểu thức rút gọn của P ta được:

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

9 tháng 3 2022

chịu

a: \(P=\dfrac{8+5x-2x-8}{x\left(x+4\right)}=\dfrac{3x}{x\left(x+4\right)}=\dfrac{3}{x+4}\)

b: Khi x=1/2 thì P=3/(1/2+4)=3:9/2=3*2/9=6/9=2/3

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)a.Rút gọn biểu thức A.b. Tính giá trị của biểu thức A khi x=4.2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠13) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 24) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với...
Đọc tiếp

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)

a.Rút gọn biểu thức A.

b. Tính giá trị của biểu thức A khi x=4.

2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1

3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2

4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)

a. Rút gọn biểu thức A 

b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).

5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)

a. Rút gọn biểu thức M 

b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)

MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!

2
NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

2 tháng 2 2022

Bài 1: ĐKXĐ:`x + 3 ne 0` và `x^2+ x-6 ne 0 ; 2-x ne 0`

`<=> x ne -3 ; (x-2)(x+3) ne 0 ; x ne2`

`<=>x ne -3 ; x ne 2`

b) Với `x ne - 3 ; x ne 2` ta có:

`P= (x+2)/(x+3)  - 5/(x^2 +x -6) + 1/(2-x)`

`P = (x+2)/(x+3) - 5/[(x-2)(x+3)] + 1/(2-x)`

`= [(x+2)(x-2)]/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`= (x^2 -4)/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`=(x^2 - 4 - 5 - x-3)/[(x-2)(x+3)]`

`= (x^2 - x-12)/[(x-2)(x+3)]`

`= [(x-4)(x+3)]/[(x-2)(x+3)]`

`= (x-4)/(x-2)`

Vậy `P= (x-4)/(x-2)` với `x ne -3 ; x ne 2`

c) Để `P = -3/4`

`=> (x-4)/(x-2) = -3/4`

`=> 4(x-4) = -3(x-2)`

`<=>4x -16 = -3x + 6`

`<=> 4x + 3x = 6 + 16`

`<=> 7x = 22`

`<=> x= 22/7` (thỏa mãn ĐKXĐ)

Vậy `x = 22/7` thì `P = -3/4`

d) Ta có: `P= (x-4)/(x-2)`

`P= (x-2-2)/(x-2)`

`P= 1 - 2/(x-2)`

Để P nguyên thì `2/(x-2)` nguyên

`=> 2 vdots x-2`

`=> x -2 in Ư(2) ={ 1 ;2 ;-1;-2}`

+) Với `x -2 =1 => x= 3` (thỏa mãn ĐKXĐ)

+) Với `x -2 =2 => x= 4`  (thỏa mãn ĐKXĐ)

+) Với `x -2 = -1=> x= 1` (thỏa mãn ĐKXĐ)

+) Với `x -2 = -2 => x= 0`(thỏa mãn ĐKXĐ)

Vậy `x in{ 3 ;4; 1; 0}` thì `P` nguyên

e) Từ `x^2 -9 =0`

`<=> (x-3)(x+3)=0`

`<=> x= 3` hoặc `x= -3`

+) Với `x=3` (thỏa mãn ĐKXĐ) thì:

`P  = (3-4)/(3-2)`

`P= -1/1`

`P=-1`

+) Với `x= -3` thì không thỏa mãn ĐKXĐ

Vậy với x= 3 thì `P= -1`

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3            a, Rút gọn biểu thức A.            b, Tính giá trị...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

17 tháng 12 2017

a, ĐKXĐ : x khác -4;4;-2

P =[ 8+x-4/(x-4).(x+4) ] : 1/(x+2).(x-4)

   = x+4/(x+4).(x-4)   . (x+2).(x-4)

   = x+2

b, x^2-9x+20 = 0

<=> (x^2-4x)-(5x-20)=0

<=> (x-4).(x-5)=0

<=> x-4=0 hoặc x-5=0

<=> x=4 hoặc x=5

+, Với x=4 thì P = 4+2 = 6

+, Với x=5 thì P = 5+2 = 7

k mk nha