K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

27 tháng 8 2020

Bài 1

a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)

b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)

Bài 2 

a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)

b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)

Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)

c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)

\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)

Bài 3 

a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)

b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3            a, Rút gọn biểu thức A.            b, Tính giá trị...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

22 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

a: Sửa đề: \(B=\left(\dfrac{2a}{a+3}+\dfrac{2}{3-a}+\dfrac{3}{a^2-9}\right):\dfrac{a+1}{a-3}\)

\(=\dfrac{2a^2-6a-2a-6+3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}=\dfrac{2a^2-8a-3}{\left(a+3\right)\left(a+1\right)}\)

b: |a|=2

=>a=2 hoặc a=-2

Khi a=2 thì \(B=\dfrac{2\cdot2^2-8\cdot2-3}{\left(2+3\right)\left(2+1\right)}=\dfrac{-11}{15}\)

Khi a=-2 thì \(B=\dfrac{2\cdot\left(-2\right)^2-8\cdot\left(-2\right)-3}{\left(-2+3\right)\left(-2+1\right)}=-21\)

5 tháng 8 2020

\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\left(ĐK:a\ne\pm1\right)\)

\(=\frac{a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2}{a^2-1}\)

\(=\frac{a^2+a-a^2+a+2}{a^2-1}=\frac{2}{a-1}\left(Q.E.D\right)\)

Để A nguyên suy ra 2/a-1 nguyên

\(< =>2⋮a-1< =>a\in\left\{2;3;-1;0\right\}\)

Để \(A\ge1< =>\frac{2}{a-1}\ge1< =>2\ge a-1< =>a\le3\)

mấy bài khác để từ từ mình làm dần hoặc bạn khác làm

29 tháng 6 2017

lớp 8a3 nguyễn khuyến đúng ko