K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

a, \(P=\frac{2a^2}{a^2-1}+\frac{a}{a+1}-\frac{a}{a-1}\)

\(=\frac{2a^2}{a^2-1}+\frac{a\left(a-1\right)}{a^2-1}-\frac{a\left(a+1\right)}{a^2-1}\)

\(=\frac{2a^2+a^2-a-a^2-a}{a^2-1}=\frac{2a^2-2a}{a^2-1}\)

\(=\frac{2a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{2a}{a+1}\)

30 tháng 12 2020

 bạn tìm giá trị nguyên của a để P đạt giá trị nguyên đi 

20 tháng 12 2017

a, ĐKXĐ: \(a\ne1;a\ne-1\) 

Ta có:

 \(P=\frac{2a^2}{a^2-1}+\frac{a}{a+1}-\frac{a}{a-1}=\frac{2a^2}{\left(a-1\right)\left(a+1\right)}\) \(+\frac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}-\frac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

\(\Rightarrow P=\frac{2a^2+a^2-a-a^2-a}{\left(a-1\right)\left(a+1\right)}=\frac{2a^2-2a}{\left(a-1\right)\left(a+1\right)}=\frac{2a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(\Rightarrow P=\frac{2a}{a+1}\) 

b. Để P có giá trị nguyên \(\Rightarrow2a⋮a+1\Rightarrow2\left(a+1\right)-2a⋮a+1\Rightarrow2a+2-2a⋮a+1\)

\(\Rightarrow2⋮a+1\) vì \(a\in Z\Rightarrow a+1\in\left\{-2;-1;1;2\right\}\Rightarrow a\in\left\{-3;-2;0;1\right\}\)

Vậy \(a\in\left\{-3;-2;0;1\right\}\)

20 tháng 12 2017

Giúp Mk vs mai thi rồi

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

25 tháng 3 2018

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

25 tháng 3 2018

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)

1 tháng 1 2022

Answer:

\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)

ĐKXĐ: 

\(x-3\ne0\)

\(9-x^2\ne0\)

\(x+3\ne0\)

\(x+1\ne0\)

(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)

\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)

\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}\)

Có: \(x^2+x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)

Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)

Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)

Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)

\(\Rightarrow x+1\inƯ\left(3\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)

14 tháng 11 2018

a,ĐKXĐ:\(x\ne2,x\ne-3\)

\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x-4}{x-2}\)

c,Để A = - 3/4

thì: \(\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)

\(4x-16=-3x+6\)

\(4x+3x=6+16\)

\(7x=22\)

\(x=\frac{22}{7}\)

14 tháng 11 2018

d,\(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=\frac{x-2}{x-2}-\frac{2}{x-2}=1-\frac{2}{x-2}\)

Để A nguyên thì: \(x-2\inƯ\left(2\right)\)

Ta có: \(Ư\left(2\right)=\left\{\pm1,\pm2\right\}\)

Xét từng TH:

_ x - 2 = -1 => x = 1

_ x - 2 = 1 => x = 3

_ x - 2 = -2 => x = 0

_ x- 2 = 2 => x= 4

Vậy: \(x\in\left\{0,1,3,4\right\}\)

=.= hok tốt!!

20 tháng 12 2017

Ai BT làm chỉ mk bài  này với mai thi ròi