K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 11 2020

\(M=\frac{x^2-2x+2021}{x^2}\Rightarrow Mx^2=x^2-2x+2021\Leftrightarrow\left(M-1\right)x^2+2x-2021=0\)(*)

\(\Delta'=1+2021\left(M-1\right)=2021M-2020\)

Để phương trình (*) có nghiệm thì \(\Delta'\ge0\Rightarrow2021M-2020\ge0\Leftrightarrow M\ge\frac{2020}{2021}\).

Với \(M=\frac{2020}{2021}\)thì (*) có nghiệm \(x=2021\).

Vậy \(minM=\frac{2020}{2021}\)đạt tại \(x=2021\).

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

5 tháng 11 2021

\(M=x^2+2x-8-x^3+x^3=x^2+2x-8=\left(x^2+2x+1\right)-9=\left(x+1\right)^2-9\ge-9\)

\(minM=-9\Leftrightarrow x=-1\)

5 tháng 11 2021

\(M=x^2+2x-8-x^3+x^3=\left(x^2+2x+1\right)-9=\left(x+1\right)^2-9\ge-9\\ M_{min}=-9\Leftrightarrow x=-1\)

27 tháng 6 2019

16 tháng 11 2021

\(P=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

4 tháng 7 2017

25 tháng 1 2019

NV
28 tháng 4 2021

Chắc là \(M=\dfrac{4x+1}{x^2+3}\) đúng không nhỉ?

\(M=\dfrac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\dfrac{\left(x+2\right)^2}{x^2+3}\ge-1\)

\(M=\dfrac{12x+3}{3\left(x^2+3\right)}=\dfrac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\dfrac{4}{3}-\dfrac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\dfrac{4}{3}\)

\(\Rightarrow-1\le M\le\dfrac{4}{3}\)

Mà M nguyên \(\Rightarrow M=\left\{-1;0;1\right\}\)

- Với \(M=-1\Rightarrow\dfrac{4x+1}{x^2+3}=-1\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)

- Với \(M=0\Rightarrow\dfrac{4x+1}{x^2+3}=0\Rightarrow4x+1=0\Rightarrow x=-\dfrac{1}{4}\)

- Với \(M=1\Rightarrow\dfrac{4x+1}{x^2+3}=1\Leftrightarrow x^2-4x+2=0\Rightarrow x=2\pm\sqrt{2}\)

Vậy \(x=\left\{-2;-\dfrac{1}{4};2-\sqrt{2};2+\sqrt{2}\right\}\) thì M nguyên

29 tháng 7 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B

20 tháng 3 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   1 2   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

 

Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0  với mọi x, y nên A ≥ -17 với mọi x, y

=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4  

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: C