Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+2x-8-x^3+x^3=x^2+2x-8=\left(x^2+2x+1\right)-9=\left(x+1\right)^2-9\ge-9\)
\(minM=-9\Leftrightarrow x=-1\)
\(M=x^2+2x-8-x^3+x^3=\left(x^2+2x+1\right)-9=\left(x+1\right)^2-9\ge-9\\ M_{min}=-9\Leftrightarrow x=-1\)
\(P=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-3
Chắc là \(M=\dfrac{4x+1}{x^2+3}\) đúng không nhỉ?
\(M=\dfrac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\dfrac{\left(x+2\right)^2}{x^2+3}\ge-1\)
\(M=\dfrac{12x+3}{3\left(x^2+3\right)}=\dfrac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\dfrac{4}{3}-\dfrac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\dfrac{4}{3}\)
\(\Rightarrow-1\le M\le\dfrac{4}{3}\)
Mà M nguyên \(\Rightarrow M=\left\{-1;0;1\right\}\)
- Với \(M=-1\Rightarrow\dfrac{4x+1}{x^2+3}=-1\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
- Với \(M=0\Rightarrow\dfrac{4x+1}{x^2+3}=0\Rightarrow4x+1=0\Rightarrow x=-\dfrac{1}{4}\)
- Với \(M=1\Rightarrow\dfrac{4x+1}{x^2+3}=1\Leftrightarrow x^2-4x+2=0\Rightarrow x=2\pm\sqrt{2}\)
Vậy \(x=\left\{-2;-\dfrac{1}{4};2-\sqrt{2};2+\sqrt{2}\right\}\) thì M nguyên
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 12 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì với mọi x; y nên A ≥ -17 với mọi x; y
=> A = -17
⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: B
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 1 2 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0 với mọi x, y nên A ≥ -17 với mọi x, y
=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: C
\(M=\frac{x^2-2x+2021}{x^2}\Rightarrow Mx^2=x^2-2x+2021\Leftrightarrow\left(M-1\right)x^2+2x-2021=0\)(*)
\(\Delta'=1+2021\left(M-1\right)=2021M-2020\)
Để phương trình (*) có nghiệm thì \(\Delta'\ge0\Rightarrow2021M-2020\ge0\Leftrightarrow M\ge\frac{2020}{2021}\).
Với \(M=\frac{2020}{2021}\)thì (*) có nghiệm \(x=2021\).
Vậy \(minM=\frac{2020}{2021}\)đạt tại \(x=2021\).