Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ĐK: \(a\ge0;a\ne1\)
Ta có: P\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\times\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}=\frac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)
Mk có làm tắt vài chỗ (vì lười .-.) , có gì ko hiểu cmt cho mk biết nha
1.
\(P=\left(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{a+\sqrt{a}}{a-1}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\\ =\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}\right):\left(\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ \frac{1}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\\ =\frac{\sqrt{a}+1}{2\sqrt{a}}\)
2. Mk giải chưa ra, sorry nha :<)
\(M=\left(\frac{3}{\sqrt{a+1}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}+1\right)\)
\(=\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\right):\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{\left(1+a\right)\left(1-a\right)}}\right)\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}.\frac{\sqrt{\left(1+a\right)\left(1-a\right)}}{3+\sqrt{\left(1-a\right)\left(1+a\right)}}\)
\(=\sqrt{1-a}\left(đpcm\right)\)