Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)
\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)
5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1
\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)
\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)
Lấy (2)-(1) ta có
\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)
\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)
Do \(1-\frac{1}{5^{50}}< 1\)
\(\Rightarrow M< \frac{1}{4}\)
a ) \(\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
b ) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow\left(\frac{3}{5}^2\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow\left(\frac{9}{25}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow n=5\)
c ) \(\left(-0,25\right)^p=\frac{1}{256}\)
\(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)
\(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\left(-\frac{1}{4}\right)^4\)
\(\Leftrightarrow p=4\)
\(a.\)
\(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
Vậy : \(m=4\)
\(b.\)
\(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{15}\)
\(\Rightarrow n=5\)
Vậy : \(n=5\)
\(c.\)
\(\left(-0,25\right)^p=\frac{1}{256}\)
\(\Rightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)
\(\Rightarrow\left(-\frac{1}{4}\right)^p=\left(\frac{1}{4}\right)^4\)
\(\Rightarrow p=4\)
Vậy : \(p=4\)
Bài 4:
x O y z m n
Giải:
Vì Om là tia phân giác của góc xOz nên:
mOz = 1/2.xOz
Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy
Ta có: xOz + zOy = 180o ( kề bù )
=> 1/2(xOz + zOy) = 1/2 . 180o
=> 1/2.xOz + 1/2.zOy = 90o
=> mOz + zOn = 90o
=> mOn = 90o (đpcm)
Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55
Vậy 7^6 + 7^5 - 7^4 chia hết cho 55
A = 1 + 5 + 5^2 + ... + 5^50
=> 5A = 5 + 5^2 + 5^3 + ... + 5^51
=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )
=> 4A = 5^51 - 1
=> A = ( 5^51 - 1 )/4
d: \(D=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)
\(=-4:\dfrac{13}{12}\)
\(=-4\cdot\dfrac{12}{13}=-\dfrac{48}{13}\)
e: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
=20-12+5-6
=8+5-6
=13-6=7
f: \(F=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{2}:6\)
\(=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{12}\)
\(=\dfrac{27}{12}+\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{34}{12}=\dfrac{17}{6}\)
\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)
\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)
\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)
\(4M=1-\frac{1}{5^{50}}\)
\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)
Đpcm
Cảm ơn, cảm ơn rất nhiều!!!