Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)
Vậy \(x>\sqrt{2}\)
b)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)
Vậy \(M=\sqrt{x}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)
Vậy \(x>4\)
a: ĐKXĐ: x=0; x<>1
\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
b: Sửa đề: P=1/M
P=1/4-x=-1/x-4
Để P nguyên thì x-4 thuộc {1;-1}
=>x thuộc {5;3}
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Thay x=9 vào A, ta được:
\(A=\dfrac{3-1}{3+1}=\dfrac{1}{2}\)
c: Ta có: P=AB
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}+\dfrac{5-x}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{6}{\sqrt{x}+1}\)
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
\(a,ĐK:x>0;x\ne1\\ b,M=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}-1\\ c,M< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow0< x< 1\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)
\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)
\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(x\ge0;x\ne3;x\ne-3;x\ne9;x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\\ =\dfrac{3}{\sqrt{x}-2}\)
Tick hộ nha 😘
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
c) \(A=2\sqrt{x}-1< -1\Leftrightarrow2\sqrt{x}< 0\)(vô lý do \(2\sqrt{x}\ge0\forall x\))
Vậy \(S=\varnothing\)
Bài 3:
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt[]{x}+1}\\ DKXD:x\ne1;x\ge0\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}+1\)
\(C.A< -1\Leftrightarrow2\sqrt{x}-1< -1\\ \Leftrightarrow2\sqrt{x}< 0\\ \Leftrightarrow x< 0\left(ktmdk\right)\\ =>BPTVN:S=\varnothing\)