Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M= \(\frac{x^2-5}{x^2-2}\)=\(\frac{x^2-2-3}{x^2-2}\)= 1 - \(\frac{3}{x^2-2}\)
Để M là số nguyên thì ( x2 - 2) phải thuộc Ư(3)={1;3;-1;-3}
Với x2 -2=1 => x2 = 3 ( loại vì x là số nguyên) ; Với x2 -2=3 => x2=5( loại vì x là số nguyên)
Với x2-2=-1 =>x=1 hoặc x=-1(nhận); Với x2 -2=-3 =>x2 =-1( vô lí)
Vậy x=-1 và x=1
Để M là số nguyên thì x bình-5 chia hết cho x bình-2
Ta có:
x bình-5 = x bình-2-3
Vậy:
(x bình-2)-3 sẽ chia hết cho x bình-2
Mà x bình-2 chia hết cho x bình-2 (là sẽ bằng ko?)
Nên -3 sẽ chia hết cho x bình-2
Ư(-3)=-3 ;3;1 ; -1
Suy ra:
x*2 -2 = 1 suy ra x= tập hợp rỗng ( ko tính đc)
x*2-2= -1 suy ra x= 1
x*2-2=3 suy ra x=tập hợp rỗng(ko tính được)
x*2-2=-3 suy ra x=tập hợp rỗng(ko tính được)
Vậy x=1
\(M=\frac{5-x}{x-2}=-\frac{x-5}{x-2}=-\frac{x-2}{x-2}-\frac{3}{x-2}=-1-\frac{3}{x-2}\)
M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt giá trị lớn nhất\(\Leftrightarrow x\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x=1\)
Vậy GTNN của M là -4 khi và chỉ khi x = 1
Cho làm lại :
\(M=\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt GTNN\(\Leftrightarrow x-2\)đạt giá trị âm lớn nhất
\(\Leftrightarrow x-2=-1\Leftrightarrow x=1\)
Vậy \(M_{min}=-4\Leftrightarrow x=1\)
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x2 - 2 | 1 | -1 | 3 | -3 |
x2 | 3 | 1 | 5 | -1 |
x | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Vô nghiệm |
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên
bạn ơi bạn cũ là fan của WANNA ONE à mik cux vậy nè
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
1) \(M=\frac{x-1}{x-5}=\frac{\left(x-5\right)+4}{x-5}=1+\frac{4}{x-5}\)
Vậy để M nguyên thì \(x-5\inƯ\left(4\right)\)
Mà Ư(4)={1;-1;2;-2;4;-4}
Ta có bảng sau:
x-5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy x={1;3;4;6;7;9}
2) Để M âm
\(\Leftrightarrow\)\(\frac{x-1}{x-5}< 0\)
\(\Leftrightarrow\begin{cases}x-1>0\\x-5< 0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\x-5>0\end{cases}\)
\(\Leftrightarrow1< x< 5\)
hố hố..................................................................
Ta có M=\(\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để M nguyên thì \(x-2\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
Vậy x={-1,1,3,5}
để M nguyên
=> \(5-x⋮x-2\)và \(x\ne2\)
vì x-2\(⋮x-2\)
=> -(x-2)\(⋮x-2\)
=>\(\left(5-x\right)-\left[-\left(x-2\right)\right]⋮x-2\)
\(\Rightarrow3⋮x-2\)
=>\(x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
ta có bảng
mà \(x\ne2\)
=> \(x\in\left\{3;5;-1\right\}\)