K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: x>3

\(M=\dfrac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\dfrac{2}{x+5}\)

TH2: x<3

\(M=\dfrac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\dfrac{-2}{x+5}\)

b: TH1: x>3

Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{-1;-6;-3;-7\right\}\)

=>\(x\in\varnothing\)

TH2: x<3

Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{-4;-6;-3;-7\right\}\)

29 tháng 4 2018
Mik ko bít nhưn mk ik.mk dag bị âm điểm 😣😣😣
29 tháng 4 2018

\(a)\) Ta có : 

\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)

+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có : 

\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)

+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có : 

\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)

Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\) 

         +) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)

Chúc bạn học tốt ~ 

1 tháng 1 2022

Answer:

\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)

ĐKXĐ: 

\(x-3\ne0\)

\(9-x^2\ne0\)

\(x+3\ne0\)

\(x+1\ne0\)

(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)

\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)

\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}\)

Có: \(x^2+x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)

Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)

Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)

Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)

\(\Rightarrow x+1\inƯ\left(3\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)

31 tháng 5 2017

Câu 1:

\(M=\frac{2|x-3|}{\left(x+5\right)\left(x-3\right)}\)

Với \(x>3\)M trở thành \(M=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\frac{2}{x+5}\)

Với \(x< 3\)M trở thành \(M=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)

Câu b:

  • \(x>3\)ta có :để M nguyên 2 chia hết cho x+5  hay x +5 là ước của 2 nên : x+5 = 2 => x =-3 loại
  • \(x< 3\)là ta : M nguyên khi x+5 là ước của -2 ta có : x+5 = -2 => x =-7

Vậy x=-7

5 tháng 11 2018

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

5 tháng 11 2018

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp

20 tháng 12 2020

a) x2 - 5x - y2 -5y

= ( x2 - y2 ) + ( -5x - 5y)

= ( x - y ) ( x + y) - 5( x + y )

= ( x + y ) ( x - y -5)

b) x3 + 2x2 - 4x - 8

= x2 ( x + 2 ) - 4 ( x + 2 )

= ( x +2 ) ( x2 -4 )

= ( x+2)2 ( x-2)

20 tháng 12 2020

Bai 2 : 

a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)

\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)

\(=2x^2+2x+13-2x^2-2x+12=25\)

b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)

\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)

\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi