Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)
+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)
+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\)
+) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)
Chúc bạn học tốt ~
Answer:
\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)
ĐKXĐ:
\(x-3\ne0\)
\(9-x^2\ne0\)
\(x+3\ne0\)
\(x+1\ne0\)
(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)
\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)
\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)
Có: \(x^2+x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)
Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)
Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)
Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)
Câu 1:
\(M=\frac{2|x-3|}{\left(x+5\right)\left(x-3\right)}\)
Với \(x>3\)M trở thành \(M=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\frac{2}{x+5}\)
Với \(x< 3\)M trở thành \(M=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Câu b:
- \(x>3\)ta có :để M nguyên 2 chia hết cho x+5 hay x +5 là ước của 2 nên : x+5 = 2 => x =-3 loại
- \(x< 3\)là ta : M nguyên khi x+5 là ước của -2 ta có : x+5 = -2 => x =-7
Vậy x=-7
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a: TH1: x>3
\(M=\dfrac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\dfrac{2}{x+5}\)
TH2: x<3
\(M=\dfrac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\dfrac{-2}{x+5}\)
b: TH1: x>3
Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{-1;-6;-3;-7\right\}\)
=>\(x\in\varnothing\)
TH2: x<3
Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{-4;-6;-3;-7\right\}\)