\(B=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
31 tháng 8 2017

Help me!!!!

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{-\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x\sqrt{x}+x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\dfrac{-2x^2+x\sqrt{x}-2\sqrt{x}+1+2x^2-x\sqrt{x}-2x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-2x-\sqrt{x}+1}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{-\sqrt{x}\left(2x+\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

b: Thay \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) vào A, ta được:

\(A=\dfrac{17-12\sqrt{2}-\sqrt{2}+1+1}{3-2\sqrt{2}}=\dfrac{19-13\sqrt{2}}{3-2\sqrt{2}}=5-\sqrt{2}\)

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

bài 1: rút gọn biểu thức a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\) b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\) c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\) d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\) bài 2: giải phương trình c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\) bài 3 a)tìm điều kiện để căn thức bậc 2...
Đọc tiếp

bài 1: rút gọn biểu thức

a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)

b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)

c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)

bài 2: giải phương trình

c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)

b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)

bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1

a) rút gọn Q b) tính giá trị của Q khi x= 9

bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

a) tìm điều kiện của x để biểu thức P xác định

b) rút gọn P

c) tìm giá trị của x để P< 0

1
10 tháng 10 2020

các bạn ơi giúp mình với khocroi

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)