\(A=\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

\(A=\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right)\div\frac{x+1}{x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)

\(=\left(\frac{x^2+x+1}{x}+\frac{x+2}{x}-\frac{2-x}{x}\right)\times\frac{x}{x+1}\)

\(=\left(\frac{x^2+x+1+x+2-2+x}{x}\right)\times\frac{x}{x+1}\)

\(=\frac{x^2+3x+1}{x}\times\frac{x}{x+1}=\frac{x^2+3x+1}{x+1}\)

b) x3 - 4x2 + 3x = 0

<=> x( x2 - 4x + 3 ) = 0

<=> x( x - 1 )( x - 3 ) = 0

<=> x = 0 (ktm) hoặc x = 1(tm) hoặc x = 3(tm)

Bạn tự thế các giá trị tm nhé ;)

9 tháng 3 2021

b) Ta có: \(x^3-4x^2+3x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

<=> x=0 ( loại) hoặc x=1 (loại) hoặc x=3 ( thỏa mãn)

Thay x=3 vào A ta có:

\(A=\frac{3^2+3.3+1}{3+1}=\frac{19}{4}\)

16 tháng 7 2017

Làm xong k lun

10 tháng 1 2021

cái này nó hơi khó 1 tí nên chú ý chút khác lên lever :>

a, \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)ĐK : x khác 0 ; 2 ; -2

\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4x\left(x-2\right)}{MTC}+\frac{2x\left(x+2\right)}{MTC}+\frac{\left(6-5x\right)x}{MTC}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4x^2-8x+2x^2+4x+6x-5x^2}{MTC}\right):\frac{x+1}{x-2}\)

\(=\frac{x^2+2x}{x\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Ta có : \(x^2-2x=8\Leftrightarrow x^2-2x-8=0\)

\(\left(x-4\right)\left(x+2\right)=0\)<=> \(x=4;-2\)

TH1 : Thay x = 4 ta được : \(\frac{1}{4+1}=\frac{1}{5}\)

TH2 : Thay x = -2 ta được : ( ktmđkxđ ) 

10 tháng 1 2021

\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)

a)\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\right)\times\frac{x-2}{x+1}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)

\(=\left(\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}\times\frac{x-2}{x+1}\)

\(=\frac{1}{x+1}\)

b) x2 - 2x = 8

<=> x2 - 2x - 8 = 0

<=> x2 - 4x + 2x - 8 = 0

<=> x( x - 4 ) + 2( x - 4 ) = 0

<=> ( x - 4 )( x + 2 ) = 0

<=> x = 4 ( tm ) hoặc x = -2 ( ktm )

Với x = 4 ( tm ) => A = 1/5

Với x = -2 ( ktm ) => A không xác định

20 tháng 8 2018

B1:dài quá :vv
B2:\(Q=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}=\frac{2}{3}.\frac{x}{x^2+x+1}\)

\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\Rightarrow\frac{x^2-x+1}{x}+2=\frac{3}{2}+2\Rightarrow\frac{x^2+x+1}{x}=\frac{7}{2}\)

\(\Rightarrow\frac{x}{x^2+x+1}=\frac{2}{7}\Rightarrow Q=\frac{2}{3}.\frac{2}{7}=\frac{4}{21}\)

29 tháng 8 2018

3.

Ta có: \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

 \(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)   

Do a(a-1)(a+1)(a-2)(a+2) là tích của 5 số hạng liên tiếp nên chia hết cho 2,3 và 5

Lại có a(a-1)(a+1) là tích của 3 số hạng liên tiếp nên chia hết cho 2,3 suy ra 5a(a-1)(a+1) chia hết cho 2,3,5

Từ đó:a(a-1)(a+1)(a-1)(a+2)+5a(a-1)(a+1) chia hết cho 2,3,5 hay a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1) chia hết cho 30 \(\Leftrightarrow a^5-a\) chia hết cho 30

Tương tự ta có\(b^5-b\) chia hết cho 30, \(c^5-c\) chia hết cho 30

Do đó:\(a^5-a+b^5-b+c^5-c⋮30\)

\(\Leftrightarrow a^5+b^5+c^5-\left(a+b+c\right)⋮30\)

Mà a+b+c=0 nên;

\(a^5+b^5+c^5⋮30\left(ĐCCM\right)\)

18 tháng 8 2020

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??