Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)

\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)
\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)
a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)
\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)
\(=3\sqrt{xy}+2y\)

a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

Bài 2:
a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)
b: Để P>=-2 thì P+2>=0
\(\Leftrightarrow-2\sqrt{a}+2>=0\)
=>0<=a<1

Bài 1:
\(M=\dfrac{9}{\sqrt{11}-\sqrt{2}}-\dfrac{\sqrt{22}-\sqrt{10}}{\sqrt{11}-\sqrt{5}}-\dfrac{22}{\sqrt{11}}\)
\(=\dfrac{9\left(\sqrt{11}+\sqrt{2}\right)}{11-2}-\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{5}\right)\left(\sqrt{11}+\sqrt{5}\right)}{11-5}-\dfrac{2.\left(\sqrt{11}\right)^2}{\sqrt{11}}\)
\(=\sqrt{11}+\sqrt{2}-\sqrt{2}-2\sqrt{11}=-\sqrt{11}\)
\(M=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+\dfrac{a-b}{\sqrt{a}+\sqrt{b}}+\dfrac{2b}{\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(\sqrt{b}\right)^2}{\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}+\sqrt{a}-\sqrt{b}+2\sqrt{b}=2\sqrt{a}\)
Bài 2:
a)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(M=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\) (*)
b)
Thay x = 0,25 vào (*), ta có:
\(M=\dfrac{2}{\sqrt{\dfrac{1}{4}}+1}=\dfrac{4}{3}\)
c)
\(M\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\ge1\)
\(\Leftrightarrow2\ge\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\le1\)
\(\Leftrightarrow x\le1\)
mà x khác 1 và x > 0(theo ĐKXĐ)
=> 0 < x < 1 thì M \(\ge\) 1

Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3

Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Chỗ câu a) là \(\dfrac{\left(\sqrt{x}-1\right)^2+4\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}}=2\) á mọi người
a: \(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\sqrt{x}+1=\sqrt{x}+1-\sqrt{x}+1=2\)
b: \(=\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}}\cdot\sqrt{x}\)
\(=\dfrac{1}{\sqrt{x}+1}-\sqrt{x}+1\)
\(=\dfrac{1+\left(-\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{1+1-x}{\sqrt{x}+1}=\dfrac{2-x}{\sqrt{x}+1}\)
A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`
A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`