Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
\(A=\dfrac{-19}{9}.\dfrac{1}{2}-\dfrac{4}{11}.\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)=-\dfrac{23}{18}\)
\(B=\left(-\dfrac{15}{6}\right):\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}.\dfrac{-11}{2}=\dfrac{25}{4}\)
\(C=\dfrac{3}{4}.\left(-8\right)-\dfrac{1}{3}.\dfrac{-7}{2}-\dfrac{5}{18}=-\dfrac{46}{9}\)
\(A=\dfrac{-19}{18}+\dfrac{4}{9}-\dfrac{2}{3}=\dfrac{-19}{18}+\dfrac{8}{18}-\dfrac{12}{18}=\dfrac{-23}{18}\)
\(B=\dfrac{-5}{2}\cdot\dfrac{-2}{1}-\dfrac{7}{12}+\dfrac{11}{6}=\dfrac{5\cdot12-7+22}{12}=\dfrac{75}{12}=\dfrac{25}{4}\)
\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)
Nhận xét
thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10
\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)
\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)
a) Ta có: \(2\dfrac{3}{3}\cdot4\cdot\left(-0.4\right)+1\dfrac{3}{5}\cdot1.75+\left(-7.2\right):\dfrac{9}{11}\)
\(=-4.8+\dfrac{8}{5}\cdot\dfrac{7}{4}-\dfrac{36}{5}\cdot\dfrac{11}{9}\)
\(=\dfrac{-24}{5}+\dfrac{14}{5}-\dfrac{44}{5}\)
\(=\dfrac{-54}{5}\)
b) Ta có: \(\left(\dfrac{1}{24}-\dfrac{5}{16}\right):\dfrac{-3}{8}+1^{10}\cdot\left(-5\right)^0\)
\(=\left(\dfrac{2}{48}-\dfrac{15}{48}\right)\cdot\dfrac{8}{-3}+1\cdot1\)
\(=\dfrac{-13}{48}\cdot\dfrac{-8}{3}+1\)
\(=\dfrac{13}{18}+\dfrac{18}{18}=\dfrac{31}{18}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)
\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)
\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)
\(A=\dfrac{-1}{100}\)
Ta có
A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)
A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)
A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)
A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)
A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)
A = \(\dfrac{-1}{1}\)
A = -1
Vậy A = -1
\(=\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\left(\dfrac{16}{16}-\dfrac{1}{16}\right)...\left(\dfrac{10000}{10000}-\dfrac{1}{10000}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}....\cdot\dfrac{9999}{10000}\)
\(=\dfrac{3.8.15.....9999}{4.9.16.....10000}=\dfrac{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(99.101\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right).....\left(100.100\right)}\)
\(=\dfrac{\left(1.2.3...99\right)\left(3.4.5....101\right)}{\left(2.3.4...100\right)\left(2.3.4...101\right)}=\dfrac{101.1}{100.2}=\dfrac{101}{200}\)
`A = 3/4 xx 8/9 xx ... xx 99/100`
`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`
`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`
`= 1/10 xx 11`
`= 11/10`.
Ta có: `11/10 > 1`
`11/19 < 1`.
`=> A > 11/19`.