\(A=\frac{x^2-10x+25}{x^2-5x}\) 

a)tìm x để \(A=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

ĐKXĐ: x2-5x\(\ne\)0

<=>x(x-5)\(\ne\)0

<=>x\(\ne\)0 và x\(\ne\)5

a)\(A=\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)

A=\(\frac{5}{2}\)

=>\(\frac{x-5}{x}=\frac{5}{2}\)

<=>\(\frac{2\left(x-5\right)}{2x}=\frac{5x}{2x}\)

=>2(x-5)=5x

<=>2x-10=5x

<=>2x-5x=10

<=>-3x=10

<=>x=\(\frac{-10}{3}\)(thỏa điều kiện xác định)

b)Để A có giá trị nguyên thì

\(\frac{x-5}{x}\in Z\)

<=>1+\(\frac{-5}{x}\)\(\in\)Z

=>x\(\in\)Ư(-5)={-1;1;5;-5}

29 tháng 4 2020

a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)

\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)

\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)

Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên

=> \(x-5⋮\)x+5

Ta có x-5=(x+5)-10

Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)

mà x nguyên => x+5 nguyên 

=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

ta có bảng

x+5-10-5-2-112510
x-15-10-7-6-4-305
ĐCĐKtmtmtmtmtmtmtmktm

Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên

30 tháng 6 2016

chưa họclolang

13 tháng 1 2016

ĐKXĐ : x2-5x khác 0

<=>x.(x-5) khác 0

<=> x khác 0 và x khác 5

a)

\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)

<=>x-5=0

<=>x=5

Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0

b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)

\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)

c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)

Để phân thức trên nguyên thì : 1-5/x là số nguyên

=>5/x là số nguyên

=>x thuộc Ư(5)={1;-1;5;-5}

Mà x khác 5 nên: x={1;-1;-5}

Vậy x={1;-1;-5}

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

A=x3/x2--4.x+2/x-x-4xx-4/xx-2

Điều kiện x \(\ne\)+-2

Ý b c tự làm 

9 tháng 12 2017

\(A=\frac{x^3}{x^2-4}.\frac{x+2}{x}-\frac{4x-4}{x-2}\)   \(ĐKXĐ:x\ne0;x\ne2\)

\(A=\frac{x^2}{x-2}-\frac{4\left(x-1\right)}{x-2}\)

\(A=\frac{x^2-4x+4}{x-2}\)

\(A=\frac{\left(x-2\right)^2}{x-2}\)

\(A=x-2\)

vậy \(A=x-2\)

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

12 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)

\(\Leftrightarrow M=\frac{x+5}{x}\)

b) Để \(M\inℤ\)

\(\Leftrightarrow x+5⋮x\)

\(\Leftrightarrow5⋮x\)

\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà \(x\ne\pm5\)

\(\Leftrightarrow x\in\left\{1;-1\right\}\)

Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

13 tháng 3 2020

\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)

\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)

\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)

b) M là số nguyên thì x+5 chia hết cho x

=> 5 chia hết cho x

x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên