Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
bạn ơi mình nghĩ đề nó phải là \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)chứ
ta có A=5 suy ra \(\frac{\sqrt{x+1}}{\sqrt{x-1}}\)=5 suy ra \(\sqrt{x+1}\)=5\(\sqrt{x-1}\)suy ra
\(^{\sqrt{x+1}^2}\)=25\(^{\sqrt{x-1}^2}\)suy ra x+1=25(x-1) suy ra x+1=25x-25 suy ra 24x=26 suy ra x=\(\frac{13}{12}\)
Để \(A=-1\)
\(\Leftrightarrow\sqrt{x}-5=-1\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow\sqrt{x}-5=-\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x}=-3+5\)
\(\Leftrightarrow2\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\) thì \(A=-1\)
Bài giải
Ta có :
\(A=-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(\Rightarrow\text{ }-\sqrt{x}-3=\sqrt{x}-5\)
\(\Rightarrow\text{ }-\sqrt{x}-\sqrt{x}=-5+3\)
\(\Rightarrow\text{ }-2\sqrt{x}=-2\)
\(\Rightarrow\text{ }\sqrt{x}=-2\text{ : }-2\)
\(\Rightarrow\text{ }\sqrt{x}=1\)
\(\Rightarrow\text{ }x=1\)
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
Ta có :\(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
để A có giá trị nguyên thi \(\sqrt{x}+3\inƯ\left(8\right)\)
KẺ BẢNG TÌM GIÁ TRỊ x =1, 25
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\sqrt{x}-5=-\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
:>
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(A=-1\)
\(\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\sqrt{x}-5=-\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)