\(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\)) chia:(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2024

Ta có: P = \frac{4\sqrt{x}}{8x} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} - 2} : \frac{\sqrt{x} + 2}{x - 4} \cdot \frac{\sqrt{x} - 2}{\sqrt{x} + 2} = \frac{4\sqrt{x}(\sqrt{x} + 2)}{(8x)(\sqrt{x} - 2)} : \frac{x - 4}{x - 4} = \frac{4(\sqrt{x} + 2)}{8(\sqrt{x} - 2)} = \frac{1}{\sqrt{x} - 2} 2) Tìm các giá trị của x để P = -4: Ta có: P = -4 \Rightarrow \frac{1}{\sqrt{x} - 2} = -4 \Rightarrow \sqrt{x} - 2 = -\frac{1}{4} \Rightarrow \sqrt{x} = \frac{7}{4} \Rightarrow x = \left(\frac{7}{4}\right)^2 = \frac{49}{16} Vậy x = 49/16 là giá trị cần tìm.

18 tháng 3 2019

1.\(x=7+4\sqrt{3}\)

\(=\left(\sqrt{3}+2\right)^2\)

Thay x=\(\left(2+\sqrt{3}\right)^2\), ta có:

\(A=\frac{3+\sqrt{3}}{4+\sqrt{3}}\)

2. \(B=\frac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(B=\frac{-3}{2-\sqrt{x}}\left(đpcm\right)\)

3. \(\frac{B}{A}=\frac{\frac{-3}{2-\sqrt{x}}}{\frac{\sqrt{x}+1}{\sqrt{x}+2}}=\frac{-3}{2-\sqrt{x}}.\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(\frac{B}{A}< -1\Rightarrow\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< -1\)

\(\Leftrightarrow\frac{3\sqrt{x}+6+x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{x-\sqrt{x}-2}< 0\)

\(\Rightarrow x-\sqrt{x}-2< 0\)(Vì \(x-2\sqrt{x}+4>0\))

\(\Leftrightarrow-1< x< 2\)

10 tháng 10 2017

nhầm \(A=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

10 tháng 10 2017

a)Điều kiện xác định:\(x>0\)

A\(=\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

=\(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\left(\sqrt{x}+1\right)^2\)

NV
13 tháng 6 2019

\(A=\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\) hay \(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\) bạn?