Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
\(A=\left(2x-3\right).\left(3x^2+2x-1\right)-\left(4x+1\right)\cdot\left(x-1\right)\)
\(A=6x^3+4x^2-2x-9x^2-6x+3-\left(4x^2-4x+x-1\right)\)
\(A=6x^3+4x^2-2x-9x^2-6x+3-4x^2+4x-x+1\)
\(A=6x^3-9x^2-5x+4\)
Với \(x=\frac{1}{2}\).Ta có :
\(A=6.\left(\frac{1}{2}\right)^3-9.\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+4\)
\(A=\frac{3}{4}-\frac{9}{4}-\frac{5}{2}+4\)
\(\Rightarrow A=0\)
1: \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)
\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)
\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)
=56
2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)
\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)
\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)
\(=6\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
1: \(=x^3-6x^2+12x-8-8x^3-36x^2-54x-27+7\left(x-1\right)^3\)
\(=-7x^3-42x^2-42x-35+7x^3-21x^2+21x-7\)
\(=-63x^2-21x-42\)
2: \(=x^3+125-\left(x^3-8\right)=125+8=133\)
3: \(=8x^3-27-8x^3-12x^2-6x-1=-12x^2-6x-28\)
x = 1/2