K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)

Vậy \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(\Rightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)\(\left(dpcm\right)\)

Bài này lớp 6 mik kiểm tra chất lượng đầu năm nè

10 tháng 7 2016

Cái vế \(\frac{1}{26}+\frac{1}{27}+...\) là sao vậy ???

10 tháng 7 2016

ak xin lỗi mk ghi lộn đề gianroi khocroi, đề đúng là:

Chứng minh rằng: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Các bạn giúp mk với mk cần gấp thank you!!! vui yeu

19 tháng 8 2023

Để tính tổng A/13, trước tiên chúng ta cần tính tổng của A và B. Để tính tổng A, ta có dãy số từ 1 đến 22000 với công sai là 4. Ta có công thức tổng của dãy số từ 1 đến 1 n with bad public d is: S = (n/2)(a + l), in that S is total, n is a number of death, a is the first section and l is the end of the end. Áp dụng công thức này vào dãy số từ 1 đến 22000, ta có: n = (l - a) / d + 1 = (22000 - 1)/4 + 1 = 5500 Do đó tổng A là: A = (5500/2 )(1 + 22000) = 5500 * 22001 = 121,005,500 Tiếp theo, để tính tổng B, ta có dãy số từ 1 đến 22002 với sai công thức là 2. Áp dụng công thức tổng, ta có: n = (l - a) / d + 1 = (22002 - 1) / 2 + 1 = 11001 Vậy tổng B là: B = (11001/2)(1 + 22002) = 11001 * 11003 = 121,172,503 Cuối cùng, để tính số A/13, ta chia tổng A cho 13: A/13 = 121,005,500 / 13 = 9,308,884 Vậy kết quả là 9,308,884. Mong rằng câu trả lời này đã giúp bạn tính được số A/13. Nếu bạn cần thêm thông tin hoặc hỗ trợ khác, xin vui lòng cho biết.

19 tháng 8 2023

? bạn oi viết thế sao mik đọc tròi ( còn lấy trên mạng nữa kìa )

dù sao cugx cảm on 

22 tháng 9 2021

::((

14 tháng 7 2016

\(A=\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)

\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)

\(A=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)

\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)

\(A=\frac{5.6.7...50}{6.7.8...51}.\frac{8.9.10...53}{7.8.9...52}\)

\(A=\frac{5}{51}.\frac{53}{7}\)

\(A=\frac{265}{357}\)

A=2(1+2)+2^3(1+2)+...+2^2009(1+2)

=3(2+2^3+...+2^2009) chia hết cho 3

A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)

=7(2+2^4+...+2^2008) chia hết cho 7

13 tháng 4 2016

Ta nhận thấy mẫu của biểu thức trên là:

              x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)

            =x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)

            =(x24+x20+...+1)(x2+1)

Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)

13 tháng 3 2018

Tự hỏi tự trả lời

3 tháng 3 2020

\(A=1+3^2+3^4+...+3^{100}\)

\(9A=3^2+3^4+3^6+...+3^{102}\)

\(8A=3^{102}-1\)

\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Vì \(3^{102}-27⋮3\)(1)

\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn )      (2)

\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)

Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)

vậy ...

3 tháng 3 2020

\(A=1+3^2+3^4+...+3^{100}\)

\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)

\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)

\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(\Leftrightarrow8A=3^{102}-1\)

\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)

\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)

\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)

(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)