Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{1000}\right)^2< 1\)
\(A=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1000000}< 1\)
\(\frac{1}{4}< \frac{1}{1\cdot2}\)
\(\frac{1}{9}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1000000}< \frac{1}{999.1000}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{999\cdot1000}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(A< \frac{1}{1}-\frac{1}{1000}< 1\)
\(\Rightarrow A< 1\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{999.1000}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{999}-\frac{1}{1000}\)
\(A< 1-\frac{1}{1000}\)
\(=>A< 1\)
\(=>ĐPCM\)
Có A = 1/2 + 1/2^2 + 1/2^3 + ......+1/2^2018
Nên 2A = 1 + 1/2 + 1/2^2 + ......+1/2^2017
Suy ra 2A - A = (1+ 1/2 + 1/2^2 +.........+1/2^2017) - (1/2 + 1/2^2 + 1/2^3 + ......+ 1/2^2^2008)
A = 1 - 1/2^2008
Nên 2^2008*A + 1 = 2^2008 * (1 - 1/2^2008) + 1
=2^2008 - 1 +1
=2^2008
Vậy, 2^2008*A+1 là 1 lũy thừa với cơ số tự nhiên
A = 1+2+22+...+210
=> 2A = 2+22+23+...+211
=> 2A - A = (2+22+23+...+211) - (1+2+22+...+210)
=> A = 211 - 1
B = 1+3+32+...+310
=> 3B = 3+32+33+...+311
=> 3B - B = (3+32+33+...+311) - (1+3+32+...+310)
=> 2B = 311 - 1
=> B = \(\frac{3^{11}-1}{2}\)
A = 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10
2A = 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11
2A - A = ( 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11 )
- ( 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10 )
A = 2 11 - 1
A = 2047
B = 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10
3B = 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11
3B - B= ( 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11 )
- ( 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10 )
2B = 3 11 - 1
B = \(\frac{3^{11}-1}{2}\)
B = 88573
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
1/2+1/2 mũ 2+1/2 mũ 3+...+1/2 mũ 100