\(|y-2021|\) + 2020.Tìm giá trị nhỏ nhất của A.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

22 tháng 5 2021

M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021

=  |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021

=  |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021

= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021 

Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)

=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)

Khi (x - 2020)(x2 - 16) = 0 

=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)

Khi 2(x - 4)2 = 0

=> x -  4 = 0

=> x = 4 (2)

Từ (1) (2) => x = 4 

Vậy Min M = 2021 <=> x = 4

13 tháng 12 2019

Ta có: A = |x - 2019| + |x - 2020|

=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1

Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)

<=> \(2019\le x\le2020\)

Vậy MinA = 1 <=> 2019 \(\le\)\(\le\)2020

12 tháng 2 2020

Mình giống bạn Edogawa Conan nhé

nhé !

Mình mới đăng kí !

Ta có: \(\hept{\begin{cases}\left|x-2019\right|\ge0\forall x\\\left|x+2020\right|\ge0\forall x\end{cases}}\)

\(\Rightarrow A=\left|x-2019\right|+\left|x+2020\right|\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2019\right|=0\\\left|x+2020\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2019\\x=-2020\end{cases}}}\)

Vậy....

17 tháng 4 2020

Ta có : A = |x - 2019| + |x + 2020|

 = |2019 - x| + |x + 2020| 

\(\ge\) |2019 - x + x + 2020|

 = 4039

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2019-x\ge0\\x+2020\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le2019\\x\ge-2020\end{cases}\Rightarrow}-2020\le x\le2019}\)

Vậy Min A = 4039 <=> \(-2020\le x\le2019\)

24 tháng 4 2020

a) Vì \(\left|4x-2\right|\ge0\forall x\)\(\Rightarrow\left|4x-2\right|+1\ge1\forall x\)

hay \(A\ge1\)

Dấu " = "xảy ra \(\Leftrightarrow4x-2=0\)\(\Leftrightarrow4x=2\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(minA=1\)\(\Leftrightarrow x=\frac{1}{2}\)

b) \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\)

\(\Rightarrow B\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)

TH2: \(\hept{\begin{cases}x-2020\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\x\le1\end{cases}}\)( vô lý )

Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)

24 tháng 4 2020

câu a) đề sai sai ,sửa đề : A = 4|x-2| + 1 

a) A =4| x-2| + 1

Ta có : |x-2| min =0 khi x = 2 

<=> 4|x-2| min = 0 khi x = 2 

<=> ( 4 | x-2| + 1 )min =1 khi x = 2 

Vậy Min của A = 1 ,khi x = 2

b) B= | x-2020| +| x-1| x

Ta có với mọi x , y \(\inℚ\)thì | x | + | y| \(\ge\left|x+y\right|\)với điều kiện x , y \(\ge0\)

Có B = | x - 2020 | + | x - 1 | 

         = | x - 2020 | + | 1 - x | \(\ge\left|x-2020+1-x\right|\)

         = | - 2019 | = 2019 

Vậy Min B = 2019 khi \(1\le x\le2020\)

Nếu đề a) ko sai thì chat riêng với mình nhé ,bạn chỉ cần dịch nhẹ chuột đến tên nik của mình ,xong nhấn nhắn tin là được !!!

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

21 tháng 11 2019

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)

\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)

\(=1-\frac{1}{\left|x-2019\right|+2021}\)

\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)

Dấu "=" xảy ra tại \(x=2019\)

21 tháng 11 2019

                                                            Bài giải

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN

          Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019

\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)

\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)

\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)