K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)

b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)

hay \(P>0\forall x>0,x\ne1\)(đpcm)

1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)

2: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

3: 2P=2*căn x+5

=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)

=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)

=>\(2x+3\sqrt{x}-4=0\)

=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

=>\(2\sqrt{x}-1=0\)

=>x=1/4

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)

\(\Leftrightarrow x-2\sqrt{x}+1=0\)

\(\Leftrightarrow x=1\left(loại\right)\)

a: Ta có: \(A=\left(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1}{x-1}\)

\(=\dfrac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+1}{1}\)

\(=x+2\sqrt{x}+1\)

1 tháng 9 2021

câu b đâu ạ

 

\(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

e) Ta có: \(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2x-3\sqrt{x}+1\right)-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x+\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)

 

m) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)\)

\(=\left(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\left(\sqrt{a}-1\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương