Cho biểu thức A = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)

b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)

hay \(P>0\forall x>0,x\ne1\)(đpcm)

10 tháng 6 2018

\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)

\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)

10 tháng 6 2018

a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)

\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)

\(=3\sqrt{xy}+2y\)

19 tháng 3 2021

a) Với \(x>0;x\ne1\), ta có:

\(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy với \(x>0,x\ne1\)thì \(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)

19 tháng 3 2021

\(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(\Rightarrow2P=\frac{2\sqrt{x}+2}{\sqrt{x}}\)

\(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\left(ĐKXĐ:x\ne0\right)\left(1\right)\)

Mà theo đề bài : \(x>0\)nên phương trình luôn được xác định.

\(\left(1\right)\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{\sqrt{x}\left(2\sqrt{x}+5\right)}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}+2=\sqrt{x}\left(2\sqrt{x}+5\right)\)

\(\Leftrightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)

\(\Leftrightarrow2\sqrt{x}+2-2x-5\sqrt{x}\)

\(\Leftrightarrow-2x-3\sqrt{x}+2=0\Leftrightarrow2x+3\sqrt{x}-2=0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}-1=0\\\sqrt{x}+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}=1\\\sqrt{x}=-2\left(vn\right)\end{cases}}\Leftrightarrow2\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(TMĐK:x>0;x\ne1\right)\)

Vậy \(2P=2\sqrt{x}+5\Leftrightarrow x=\frac{1}{4}\)

19 tháng 3 2021

a) - Với \(x>0,x\ne1\), ta có:

\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)

\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)

\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(A=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(A=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)

\(A=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)

Vậy với \(x>0,x\ne1\)thì \(A=\frac{1}{\sqrt{x}}\)

19 tháng 3 2021

\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)

\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)

\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)

\(=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)

b) \(B=\left(x-\sqrt{x}+1\right)\cdot A=\frac{1}{\sqrt{x}}\left(x-\sqrt{x}+1\right)=\frac{x}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\sqrt{x}-1\)

Xét hiệu B - 1 ta có : \(B-1=\frac{1}{\sqrt{x}}+\sqrt{x}-2=\frac{1}{\sqrt{x}}+\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Dễ thấy \(\hept{\begin{cases}\sqrt{x}>0\forall x>0\\\left(\sqrt{x}-1\right)^2\ge0\forall x\ge0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\forall x>0\)

Đẳng thức xảy ra <=> x = 1 ( ktm ĐKXĐ )

Vậy đẳng thức không xảy ra , hay chỉ có B - 1 > 0 <=> B > 1 ( đpcm )

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

23 tháng 7 2017

Bài 63. Rút gọn biểu thức sau:

a) bai63a

với a>0 và b>0;

b)
bai63b

với m>0 và x≠1

Lời Giải:

a) dap an cau a

b)

dap-an-cau-b

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

DD
26 tháng 5 2022

1) Khi \(x=4\)

\(A=\dfrac{\sqrt{4}+1}{\sqrt{4}+2}=\dfrac{3}{4}\).

2) \(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{x-1}\)

\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{\sqrt{x}+1}\)

3) \(P=2AB+\sqrt{x}=2.\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\dfrac{2}{\sqrt{x}+1}+\sqrt{x}=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}\)

\(=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}+2-2\ge2\sqrt{\dfrac{4}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)}-2\)

\(=4-2=2\)

Dấu = xảy ra khi \(\dfrac{4}{\sqrt{x}+2}=\sqrt{x}+2\Leftrightarrow x=0\) (thỏa mãn).

 

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2