Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3a\cdot\left(2+b\right)-a\cdot\left(1-b\right)-4ab\)
\(=6a+3b-a+ab-4ab=5a+3b-3ab\)
\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)
Thay \(a=-\frac{3}{5}\) vào A,ta đc:
\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)
Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)
a ,A = \(a.\frac{1}{3}+a.\frac{1}{4}-a.\frac{1}{6}\)
\(=a.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\)
\(=\frac{-3}{5}.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\\ =\frac{-3}{5}.\frac{5}{12}\)
\(=\frac{-1}{4}\)
b, B = \(b.\frac{5}{6}+b.\frac{3}{4}-b.\frac{1}{2}\)
\(=b.\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{2}\right)\)
\(=\frac{12}{13}.\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{2}\right)\)
\(=\frac{12}{13}.\frac{7}{12}\)
\(=\frac{7}{13}\)
a) Thay \(a=\frac{-3}{5}\)vào biểu thức A ta có :
\(A=\frac{-3}{5}.\frac{1}{3}+\frac{-3}{5}.\frac{1}{4}-\frac{-3}{5}.\frac{1}{6}\)
\(A=\frac{-3}{5}.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\)
\(A=\frac{-3}{5}.\frac{5}{12}\)
\(A=\frac{-1}{4}\)
Vậy giá trị của biểu thức A tại \(a=\frac{-3}{5}\)là \(\frac{-1}{4}\)
b) Thay \(b=\frac{12}{13}\)vào biểu thức B ta có :
\(B=\frac{12}{13}.\frac{5}{6}+\frac{12}{13}.\frac{3}{4}-\frac{12}{13}.\frac{1}{2}\)
\(B=\frac{12}{13}.\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(B=\frac{12}{13}.\frac{13}{12}\)
\(B=1\)
Vậy giá trị của biểu thức B tại \(b=\frac{12}{13}\)là 1
_Chúc bạn học tốt_
Câu 1 Tính
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)
Câu 2 Tính
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)
\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
Câu 3
a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)
=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120 (2)
Lấy (2) trừ (1) theo vế ta có :
3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (3117 + 3118 + 3119)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)
= 13 + 33.13 + ... + 3117.13
= 13(1 + 33 + ... + 3117) \(⋮\)13
=> M \(⋮\)13
M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)
= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)
= 40 + 34.40 + ... + 3116.40
= 40(1 + 34 + ... + 3116)
= 5.8.(1 + 34 + ... + 3116) \(⋮\)5
4) Tính
A = 2100 - 299 - 298 - ... - 22 - 2 - 1
=> 2A = 2101 - 2100 - 299 - 298 - 22 - 2 - 1
Lấy 2A trừ A theo vế ta có :
2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)
=> A = 2101 - 2100 - 2100 + 1
=> A = 2101 - (2100 + 2100) + 1
=> A = 2101 - 2100 . 2 + 1
=> A = 1
Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
= 99.100.101
=> C = 99.100.101 : 3 = 333300
b) Ta có : D = 22 + 42 + 62 + ... + 982
= 22(12 + 22 + 32 + ... + 492
= 22 .(12 + 22 + 32 + ... + 492)
= 22.(1.1 + 2.2 + 3.3 + ... + 49.49)
= 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]
= 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]
Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50
=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
= 49.50.51
=> E = 49.50.51/3 = 41650
Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]
= 22.[41650 - 49(49 + 1)/2]
= 22.[41650 - 1225
= 22.40425
= 161700
=> D = 161700
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)
\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)
\(5A=1-\frac{1}{2022}\)
\(5A=\frac{2022}{2022}-\frac{1}{2022}\)
\(5A=\frac{2021}{2022}\)
\(A=\frac{2021}{2022}\div5\)
\(A=\frac{20201}{10110}\)
TL:
\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
@@@@@@@@@@
HT
a, \(A=3a.2.b-a.432b-4ab\)
\(=6ab-432ab-4ab=-430ab\)
b, \(A=-430ab=\left(-430\right).\frac{1}{229}.\frac{1}{433}=\frac{-430}{229.433}\)