Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
a) \(A=\dfrac{x^2-4x+4}{5x-10}.\) ĐK: \(x\ne2.\)
b) \(A=\dfrac{x^2-4x+4}{5x-10}=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}=\dfrac{x-2}{5}.\)
c) \(Thay\) \(x=-2018:\) \(\dfrac{-2018-2}{5}=-404.\)
a: ĐKXĐ: x<>0; x<>5; x<>5/2; x<>-5
b: \(M=\left(\dfrac{x}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{x\left(x+5\right)}\right):\dfrac{2x-5}{x\left(x+5\right)}\)
\(=\dfrac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x\left(x+5\right)}{2x-5}=\dfrac{1}{x-5}\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a, điều kiện xác định: x2 - 4 ≠ 0
⇔ x2 ≠ 4
⇔x ≠ 2 và x ≠ -2
b, A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
=\(\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)
= \(\dfrac{x^2-x^2-2x+2x-4}{x^2-4}\)
= \(\dfrac{x^2-4}{x^2-4}\)
= 1
c, x=1 ⇒ A= \(\dfrac{1^2}{1^2-4}-\dfrac{1}{1-2}+\dfrac{2}{1+2}\)
= \(\dfrac{4}{3}\)
a) Điều kiện xác định:
A\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.⇔\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) Rút gọn:
A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)[do MTC là (x-2)(x+2)].
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{x^2-\left(x^2+2x\right)+2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
đkxđ:\(x\ne5,x\ne-5\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5x+25}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(\dfrac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=-\dfrac{4}{x-5}\)
thay x=1 vào bt A, ta được:
\(-\dfrac{4}{1-5}=1\)
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
\(A=\frac{2x}{x^2-25}+\frac{5}{5-x}-\frac{1}{x+5}\left(ĐKXĐ:x\ne\pm5\right)\)
\(=\frac{2x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x-5}-\frac{1}{x+5}\)
\(=\frac{2x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=-\frac{4}{x-5}\)