Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\left(\frac{2-x}{x}\right)\)
\(=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=\frac{-4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{-4}{x+2}\)
b, Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow x=0;-\frac{1}{2}\)
Thay x = 0 vào biểu thức A ta được : \(\frac{-4}{0+2}=\frac{-4}{2}=-2\)
Thay x = -1/2 vào biểu thức A ta được : \(\frac{-4}{-\frac{1}{2}+2}=\frac{-4}{\frac{3}{2}}=-\frac{2}{3}\)
c, Ta có : \(\frac{-4}{x+2}=\frac{1}{2}\Leftrightarrow-8=x+2\Leftrightarrow x=-10\)
d, Ta có : \(\frac{-4}{x+2}\)hay \(x+2\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
1. A = -4 phần x+2
2. 2x^2 + x = 0 => x = 0 hoặc x = -1/2
Với x = 0 thì A = -2
Với x = -1/2 thì A = -8/3
3. A = 1/2 => -4 phần x + 2 = 1/2
<=> -8 = x + 2
<=> x = -10
4. A nguyên dương => A > 0
=> -4 phần x + 2 > 0
Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0
=> x < -2
a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)
A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
=\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
=\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)
=\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)
= \(\frac{-4}{x+2}\)
b) Ta có : \(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)
Để A = -1/2 thì
\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)
\(\Leftrightarrow-\left(x+2\right)=-8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)
c) Để A =0,5 thì
\(\frac{-4}{x+2}=0,5\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
d) Để A \(\inℤ\)thì
\(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)
Lập bảng giá trị
x+2 | -1 | 1 | -2 | 2 | -4 | 4 |
x | -3 | -1 | -4 | 0 | -6 | 2 |
Mà \(x\ne0\)và \(x\ne2;-2\)
\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)
d, A nguyên dương <=> \(\frac{-4}{2+x}\) nguyên dương
<=> \(\begin{cases}2+x< 0\\2+x\inƯ4\end{cases}\)
<=> 2 + x \(\in\) {-1; -2; -4}
Thay 2 + x = -1 => x = -3
2 + x = -2 => x = -4
2 + x = -4 => x = -6
Vây x \(\in\left\{-3;-4;-6\right\}\)
a) x khác 0 ; 2 ;-2
\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{2-x}{x}\)
\(=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=-\frac{4}{x+2}\)
b) Ta có: 2x2+x=0
<=>x.(2x+1)=0
<=>x=0 (loại) hoặc x=-1/2
Khi x=-1/2 => A=\(-\frac{4}{-\frac{1}{2}+2}=-\frac{8}{3}\)
c)Để A=1/4
Thì: \(-\frac{4}{x+2}=\frac{1}{4}\Rightarrow x+2=-16\Leftrightarrow x=-18\)(nhận)
Vậy x=-18 thì A=1/4
d)Để A nguyên dương thì x+2 thuộc ước âm của 4
=>x+2=-1 hoặc x+2=-2 ; hoặc x+2=-4
=>x=-3 hoặc x=-4 hoặc x=-6
Vậy x=-3 hoặc x=-4 hoặc x=-6 thì A nguyên dương
\(ĐKXĐ:x\ne1\)
a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)
\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)
b) Thay \(x=-\frac{1}{2}\)vào A, ta được :
\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)
\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)
\(\Leftrightarrow A=-1\)
c) Để A < 1
\(\Leftrightarrow2x^2+1< x-1\)
\(\Leftrightarrow2x^2-x+2< 0\)
\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)
\(\Leftrightarrow x\in\varnothing\)
Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)
d) Để A có giá trị nguyên
\(\Leftrightarrow2x^2+1⋮x-1\)
\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)
\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
ĐKXĐ: \(x\ne\pm2;x\ne0\)
a) \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{2-x}{x}\)
\(A=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{-x}\)
\(A=\frac{3x}{-x\left(x+2\right)}\)
\(A=\frac{-3}{x+2}\)
b) \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=\frac{-1}{2}\left(chon\right)\end{matrix}\right.\)
Thay \(x=\frac{-1}{2}\) vào \(A=\frac{-3}{\frac{-1}{2}+2}=-2\)
c) \(A=\frac{-3}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow x+2=-6\)
\(\Leftrightarrow x=-8\)( thỏa )
d) Để A dương thì \(\frac{-3}{x+2}>0\)
\(\Leftrightarrow x+2< 0\)
\(\Leftrightarrow x< -2\)
Vậy \(\forall x< -2\) thì A luôn dương
Tham khảo :
Cho biểu thức: A = (1x−2−2x4−x2+12+x1x−2−2x4−x2+12+x). (2x−12x−1)
a) Rút gọn A
b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x22 + x = 0
c) tìm x để A = 1212
d) Tìm x nguyên để A nguyên dương
______________________Giải________________________________
ĐKXĐ: x≠±2;x≠0x≠±2;x≠0
a) A=(1x−2−2x4−x2+12+x)(2x−1)A=(1x−2−2x4−x2+12+x)(2x−1)
A=(x+2(x−2)(x+2)+2x(x−2)(x+2)+x−2(x−2)(x+2))⋅2−xxA=(x+2(x−2)(x+2)+2x(x−2)(x+2)+x−2(x−2)(x+2))⋅2−xx
A=x+2+2x+x−2(x−2)(x+2)⋅x−2−xA=x+2+2x+x−2(x−2)(x+2)⋅x−2−x
A=3x−x(x+2)A=3x−x(x+2)
A=−3x+2A=−3x+2
b) 2x2+x=0⇔x(2x+1)=0⇔[x=0(loại)x=−12(thoả mãn)2x2+x=0⇔x(2x+1)=0⇔[x=0(loai)x=−12(chon)
Thay x=−12x=−12 vào A=−3−12+2=−2A=−3−12+2=−2
c) A=−3x+2=12A=−3x+2=12
⇔x+2=−6⇔x+2=−6
⇔x=−8⇔x=−8( thỏa mãn )
d) Để A dương thì −3x+2>0−3x+2>0
⇔x+2<0⇔x+2<0
⇔x<−2