\(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\)) : \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(ĐKXĐ:x\ne0;x\ne\pm3\)

\(A=\left(\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right):\left(\frac{x^2}{3\left(9-x^2\right)}+\frac{1}{x+3}\right)\\ =\frac{x^2-3x+9}{3x\left(x-3\right)}\cdot\frac{-3\left(x+3\right)\left(x-3\right)}{x^2-3x+9}\\ =\frac{-x-3}{x}\)

b) Ta có :

\(A=\frac{-x-3}{x}< 1\\ \Leftrightarrow\frac{-x-3}{x}-1< 0\\ \Leftrightarrow\frac{-x}{x}-\frac{3}{x}-1< 0\\ \Leftrightarrow-1-1-\frac{3}{x}< 0\\ \Leftrightarrow-2-\frac{3}{x}< 0\\ \Leftrightarrow\frac{-3}{x}< 2\\ \Leftrightarrow2x< -3\\ \Rightarrow x>\frac{-3}{2}=-1,5\)

Vậy để A < 1 thì x > 1,5 / x ≠ 0 ; x ≠ 3 ; x ≠ -3

28 tháng 6 2017

Phép nhân các phân thức đại số

16 tháng 10 2017

a) \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\dfrac{x^2}{3\left(9-x^2\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\left(\dfrac{x^2}{3.\left(3-x\right).\left(3+x\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+3.\left(3-x\right)}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+9-3x}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}.\dfrac{3.\left(3x-x\right).\left(3+x\right)}{x^2+9-3x}\)

\(\Rightarrow A=\dfrac{1}{x.\left(x-3\right)}.\left(-\left(x-3\right)\right).\left(3+x\right)\)

\(\Rightarrow A=\dfrac{1}{x}.\left(-1\right).\left(3+x\right)\)

\(\Rightarrow A=-\dfrac{1}{x}.\left(3+x\right)\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)

22 tháng 7 2017

a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)

\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{-1}{2}\)

b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=-\dfrac{3}{x-3}\)

Câu 3: 

\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)

=>3x-2>0

=>x>2/3

Câu 1: 

a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)

\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)

\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)

b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)

TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)

26 tháng 11 2022

a: ĐKXĐ: \(x\in\left\{-5;3;-3\right\}\)

\(A=\dfrac{-3\left(x+5\right)}{\left(x+5\right)^2}:\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+5}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-3\left(x+3\right)}\)

\(=\dfrac{x-3}{x+5}\)

b: Để A<1 thì A-1<0

=>\(\dfrac{x-3-x-5}{x+5}< 0\)

=>x+5>0

=>x>-5

c: Để A=(2x-3)/(x+1) thì \(\dfrac{2x-3}{x+1}=\dfrac{x-3}{x+5}\)

=>2x^2+10x-3x-15=x^2-2x-3

=>2x^2+7x-15-x^2+2x+3=0

=>x^2+9x-12=0

hay \(x=\dfrac{-9\pm\sqrt{129}}{2}\)

3 tháng 6 2017

a) A \(=\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(\)\(=\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(=\dfrac{-3}{x+3}:\dfrac{3x^2}{x+3}\)

\(=\dfrac{-1}{x^2}\)

b) \(x=\dfrac{-1}{2}\) (Thỏa mãn ĐKXĐ \(x\ne3;x\ne-3\) )

Thay \(x=\dfrac{-1}{2}\) vào biểu thức A, ta có:

\(A=\dfrac{-1}{\left(\dfrac{-1}{2}\right)^2}=-4\)

Vậy với \(x=\dfrac{-1}{2}\) giá trị của biểu thức A = -4.

c) \(\dfrac{-1}{x^2}< 0\)

\(\Rightarrow x^2>0\) (Luôn đúng)

Vậy với mọi giá trị của \(x\) để A < 0

28 tháng 6 2017

Rút gọn phân thức