K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

Câu 6:

ĐKXĐ: \(x\ne-\dfrac{1}{3}\)

Để \(\dfrac{9x+4}{3x+1}\in Z\) thì \(9x+4⋮3x+1\)

=>\(9x+3+1⋮3x+1\)

=>\(1⋮3x+1\)

=>\(3x+1\in\left\{1;-1\right\}\)

=>\(3x\in\left\{0;-2\right\}\)

=>\(x\in\left\{0;-\dfrac{2}{3}\right\}\)

mà x nguyên

nên x=0

Câu 2:

a: ĐKXĐ: \(x\notin\left\{2;-2;0\right\}\)

b: \(A=\left(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x-2}\right)\cdot\dfrac{x^2-4x+4}{4x}\)

\(=\left(\dfrac{1}{x+2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x-2}\right)\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{x-2+2x+x+2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{4x\left(x-2\right)}{4x\left(x+2\right)}=\dfrac{x-2}{x+2}\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:

Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$

$=4(x-1)+\frac{4}{x+1}$

Với $x$ nguyên thì:

$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow x+1$ là ước của $4$

$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$

$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$

14 tháng 9 2021

thanks bạn nha

 

NV
7 tháng 11 2021

\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)

Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

\(\Rightarrow2n-1=Ư\left(2\right)\)

Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;1\right\}\)

2.

\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)

\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)

\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)

16 tháng 12 2016

\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)

(x-3) phải thuộc ước của  28=[+-1,+-2,+,4,+-7,+-14,+-28}

x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá

16 tháng 12 2016

cảm ơn bạn nhiều

7 tháng 1 2016

A = \(\frac{x^2+6x+5}{x^2+2x-15}=\frac{x^2+x+5x+5}{x^2-3x+5x-15}=\frac{x.\left(x+1\right)+5.\left(x+1\right)}{x.\left(x-3\right)+5.\left(x-3\right)}=\frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+5\right)}\)

\(=\frac{x+1}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)

 Để A nguyên thì \(1+\frac{4}{x-3}\text{ nguyên }\Rightarrow\frac{4}{x-3}\text{ nguyên }\Rightarrow x-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau: 

x-31-12-24-4
x42517-1

Vậy x={-1;1;2;4;5;7} thì A nguyên