Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)
\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)
a) rút gọn a
a = 3 + 3^3 + 3^2 + .. + 3^100
3a = 3^2 + 3^3 + .. + 3^101
3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)
2a = 3^301 - 3
a = 3^101 - 3/2
b) chứng minh a chia hết cho 4 và k chia hết cho 9
a = 3 + 3^2 + .. + 3^100
a = (3 + 3^2) + .. + (3^99 + 3^100)
a = 3 (1 + 3) + .. + 3^99 (1 + 3)
a = 3.4 + .. + 3^99.4
a = (3 + .. + 3^99).4 ⋮ 4
vì 9 ⋮̸4
=> a ⋮̸9
AB=OA-OB=9-5=4
M là trung điểm OA khi
OM=MA=9/2=4,5 cm
N la trung diem AB khi
AN=NB=5/2=2,5 cm
bố mày điên rồi đấy nhé cân thân cái mặt chó của chúng mày
A = 4 + 42 + 43 + 44 + ... + 460 (có 60 số; 60 chia hết cho 2)
A = (4 + 42) + (43 + 44) + ... + (459 + 460)
A = 4.(1 + 4) + 43.(1 + 4) + ... + 459.(1 + 4)
A = 4.5 + 43.5 + ... + 459.5
A = 5.(4 + 43 + ... + 459) chia hết cho 5
Ta có : A= 5^1+5^2+...+5^20= (5+5^2)+(5^3+5^4)+...+(5^19+5^20)=5+5^2*(1+5+5^2+5^3+5^4+...+5^19)= 30*(1+5^2+5^3+5^4+...+5^19) chia hết cho 30
Vậy A chia hết cho 30
ta có A= (2+2^2)+(2^3+2^4)+...+(2^2003+2^2004)
=2.3+2^3.3+2^5.3+...+2^2003.3
=3(2+2^3+2^5+...+2^2003) chia hết cho 3
ta có A= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2002+2^2003+2^2004)
= 2.7+2^4.7+...+2^2002.7 =7(2+2^4+2^2002) chia hết cho 7
bạn chứng minh tương tự ghép cặp 2+2^3; 2^2+2^4;...; 2^2002+2^2004 thì ta đc A chia hết cho 5
mà (3;5)=1 suy ra A chia hết cho 15
a/ \(5^{98}\left(1+5+5^2\right)=5^{98}.31\) chia hết cho 31
b/ \(7^{150}\left(7^2-1+7\right)=7^{150}.55\) chia hết cho 55
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
a)Ta có:
A=5+52+53+.....+5100
5A=52+53+.....+5101
5A-A=(52+53+.....+5101)-(5+52+53+.....+5100)
4A=52+53+...+5101-5-52-53-.....-5100
4A=5101-5
A=\(\frac{5^{101}-5}{4}\)
Vậy A=\(\frac{5^{101}-5}{4}\)
b)Ta có:
A=5+52+53+..+5100
A=(5+52)+(53+54)+...+(599+5100)
A=30+52.(5+52)+...+598.(5+52)
A=30+52.30+...+598.30
A=30.(1+52+...+598)\(⋮\)30
Vậy A \(⋮\)30