K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)

\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)

\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)

\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)

\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)

b: \(x^2+2x=15\)

=>\(x^2+2x-15=0\)

=>(x+5)(x-3)=0

=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Thay x=-5 vào A, ta được:

\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)

c: |A|>A

=>A<0

=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)

=>(x-3)(x+2)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)

=>-2<x<3

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài