K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

Ta có:

3A-A=(32+33+34+35+...+3100+3101)-(3+32+33+34+...+3100)=3101-3 =>2A=3101-3 < 3101-3=B

=> A<B (Chứ ko phải A>B)

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

8 tháng 11 2023

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

11 tháng 9 2021

\(B=1+3+3^2+3^3+...+3^{100}+3^{101}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(\Rightarrow3B-B=3^{102}-1\)

\(\Leftrightarrow2B=3^{102}-1\)

\(\Leftrightarrow B=\dfrac{3^{102}-1}{2}\)

25 tháng 9 2016

mình ko biết

5 tháng 2 2021

phải là chứng minh A chia hết cho 121

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
25 tháng 8 2023

A = 32 + 33 + 34 +...+ 3101

A = 32.(1 + 3 + 32 + 33 +...+ 399)

A =32[(1+ 3+32+33) + (34+ 35+36+37)+...+ (396 + 397+ 398 + 399)

A = 32.[ 40 + 34.(1+ 3 + 32 + 33)+...+ 396.(1 + 3 + 32 + 33)

A = 32.[ 40 + 34. 40 + ...+ 396.40]

A = 32.40.[ 1 + 34+...+396

A = 3.120.[1 + 34 +...+ 396]

120 ⋮ 120 ⇒ A =  3.120.[ 1 + 34 +...+396] ⋮ 120 (đpcm)

20 tháng 4 2018

\(A=3+3^2+3^3+3^4+.......+3^{100}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=3.40+.........+3^{97}.40\)

\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)

\(\Rightarrow A⋮40\)( 1 )

Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)

\(\Rightarrow A⋮120\)

Vậy \(A⋮120\)( ĐPCM )

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

12 tháng 10 2019

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

12 tháng 10 2019

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0