Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 : Phân tích đa thức thành nhân tử
a) \(8x^2-2\)
\(=2\left(4x^2-1\right)\)
\(=2.\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
1. Tính giá trị biểu thức :
\(Q=x^2-10x+1025\)
\(Q=\left(x^2-2.x.5+25\right)+1000\)
\(Q=\left(x-5\right)^2+1000\)
Thay x=1005 vào biểu thức trên ta có :
\(Q=\left(1005-5\right)^2+1000\)
\(Q=1000000+1000\)
\(Q=1001000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(P=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
=\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)
=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)
= \(\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{5}{x\left(x+5\right)}\)
a, Với x=\(\dfrac{\sqrt{29}-5}{2}\Rightarrow A=\dfrac{5}{\dfrac{\sqrt{29}-5}{2}\left(\dfrac{\sqrt{29}-5}{2}+5\right)}\)
Mấy cái còn lại tương tự , bạn tự làm nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\left(1+x+x^2-x\right):\dfrac{1-x^2}{x^3-x^2-x+1}\)
\(=\left(x^2+1\right)\cdot\dfrac{\left(x-1\right)\left(x^2-1\right)}{-\left(x^2-1\right)}=\left(1-x\right)\left(x^2+1\right)\)
b: Khi x=-5/3 thì \(A=\left(1+\dfrac{5}{3}\right)\left(\dfrac{25}{9}+1\right)=\dfrac{8}{3}\cdot\dfrac{34}{9}=\dfrac{272}{27}\)
c: Để A<0 thì 1-x<0
hay x>1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐK \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne0\end{matrix}\right.\)
b) \(A=\left(\dfrac{x}{x-3}-\dfrac{x}{x+3}\right).\dfrac{x^2+6x+9}{6x}\)
\(A=\dfrac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}\)
\(A=\dfrac{6x}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}=\dfrac{x-3}{x+3}\)
c) \(A=\dfrac{x-3}{x+3}=\dfrac{x+3-6}{x+3}=1-\dfrac{6}{x+3}\)
Để A nguyên khi \(6⋮\left(x+3\right)\Rightarrow\left(x+3\right)\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Để A là nguyên dương thì \(\dfrac{6}{x+3}< 1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=-2\\x+3=-3\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\\x=-6\\x=-9\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
4
ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)
Ta có: \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3}+3\times\dfrac{1}{x^2}\times\dfrac{1}{y}+3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{y^3}-3\times\dfrac{1}{x^2}\times\dfrac{1}{y}-3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{z^3}\) \(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{-1}{z}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{-1}{z}\right)+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-\dfrac{1}{z^3}+3\times\dfrac{1}{xyz}+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)(ĐPCM)
Bài này cần có công thức:
Ta có:\(x+\frac{1}{x}=3=>x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=9-2=7\)
Lại có: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
=\(7\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-3=7.3.6-3=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)
con này không nhầm có lời giửi rồi!
\(\left(x+\frac{1}{x}\right)=3\Rightarrow x^2+\frac{1}{x^2}=7\Rightarrow x^4+\frac{1}{x^4}=47\)
\(3.7=\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^3+\frac{1}{x^3}\right)+\left(x+\frac{1}{x}\right)\)
\(\Rightarrow\left(x^3+\frac{1}{x^3}\right)=3.7-3=3.6\)
\(3.47=\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=\left(x^5+\frac{1}{x^5}\right)+x^3+\frac{1}{x^3}\\ \)
\(x^5+\frac{1}{x^5}=3.47-3.6=3\left(47-6\right)=3.41=123\)